Abstract
Expression profiles of all genes can aid in getting more insight into the biological foundation of observed phenotypes or in identifying marker genes for use in clinical practice. With the invention of high-throughput DNA Microarrays profiling the expression state of cells on a whole-genome scale became feasible.
Here, we propose a method based on model-based clustering to detect marker gene clusters that are most important in classifying different cell types. We show at the example of Acute Lymphoblastic Leukemia that these modules capture the expression state of different sample classes and that they give more biological insight into the different cell types than using just marker genes. Additionally, our method suggests groups of genes that can serve as clinical relevant markers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bhattacharya, S., Mariani, T.J.: Array of hope: expression profiling identifies disease biomarkers and mechanism. Biochemical Society Transactions 037(4), 855–862 (2009)
Downing, J.R., Shannon, K.M.: Acute leukemia: A pediatric perspective. Cancer Cell 2(6), 437–445 (2002)
Yeoh, E., Ross, M.E., Shurtleff, S.A., Williams, W.K., Patel, D., Mahfouz, R., Behm, F.G., Raimondi, S.C., Relling, M.V., Patel, A., Cheng, C., Campana, D., Wilkins, D., Zhou, X., Li, J., Liu, H., Pui, C.H., Evans, W.E., Naeve, C., Wong, L., Downing, J.R.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2), 133–143 (2002)
Ross, M.E., Zhou, X., Song, G., Shurtleff, S.A., Girtman, K., Williams, W.K., Liu, H.C., Mahfouz, R., Raimondi, S.C., Lenny, N., Patel, A., Downing, J.R.: Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102(8), 2951–2959 (2003)
Hoffmann, K., Firth, M., Beesley, A., de Klerk, N., Kees, U.: Translating microarray data for diagnostic testing in childhood leukaemia. BMC Cancer 6(1), 229 (2006)
Li, Z., Zhang, W., Wu, M., Zhu, S., Gao, C.: Gene expression-based classification and regulatory networks of pediatric acute lymphoblastic leukemia. Blood 114(20), 4486–4493 (2009)
Kerr, G., Ruskin, H.J., Crane, M., Doolan, P.: Techniques for clustering gene expression data. Computers in Biology and Medicine 38(3), 283–293 (2008)
Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10), 977–987 (2001)
Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34(2), 166–176 (2003)
Friedman, N.: Pcluster: Probabilistic agglomerative clustering of gene expression profiles. Technical Report, Hebrew University (2003)
Hastie, T., Tibshirani, R., Botstein, D., Brown, P.: Supervised harvesting of expression trees. Genome Biology 2(1), 1–12 (2001)
Hong, F., Breitling, R., McEntee, C.W., Wittner, B.S., Nemhauser, J.L., Chory, J.: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22(22), 2825–2827 (2006)
DeGroot, M.H.: Optimal Statistical Decisions. John Wiley & Sons, Inc., Hoboken (2004)
Joshi, A., Van de Peer, Y., Michoel, T.: Analysis of a Gibbs sampler method for model-based clustering of gene expression data. Bioinformatics 24(2), 176–183 (2008)
Medvedovic, M., Yeung, K.Y., Bumgarner, R.E.: Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20(8), 1222–1232 (2004)
Lilliefors, H.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Ass. 62, 399–402 (1967)
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: ICML 2009: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080. ACM, Montreal (2009)
Keller, A., Backes, C., Al-Awadhi, M., Gerasch, A., Künzer, J., Kohlbacher, O., Kaufmann, M., Lenhof, H.P.: GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinformatics 9(1), 552 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Perner, J., Zotenko, E. (2011). Characterizing Cell Types through Differentially Expressed Gene Clusters Using a Model-Based Approach. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2011. Lecture Notes in Computer Science(), vol 6870. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23184-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-23184-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23183-4
Online ISBN: 978-3-642-23184-1
eBook Packages: Computer ScienceComputer Science (R0)