Abstract
A key challenge facing many applications of new geosensor networks technology is to derive meaningful spatial knowledge from low-level sensed data. This paper presents a formal model for representing and computing topological relationship changes between continuously evolving regions monitored by a geosensor network. The definition of “continuity” is used to constrain region evolution and enables the local detection of node state transitions in the network. The model provides a computational framework for the detection of global high-level qualitative relationship changes from local low-level quantitative sensor measurements. In this paper, an efficient decentralized algorithm is also designed and implemented to detect relationship changes and its computational efficiency is evaluated experimentally using simulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stefanidis, A., Nittel, S.: GeoSensor Networks. CRC Press, Boca Raton (2005)
Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5, 161–174 (1991)
Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: 3rd International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)
Clementini, E., Felice, P.D., van Oosterom, P.: A small set of formal topological relationships suitable for end-user interaction. In: Proceedings of the Third International Sym. on Advances in Spatial Databases, pp. 277–295 (1993)
Zhao, F., Guibas, L.J.: Wireless Sensor Networks: An Information Processing Approach. Elsevier, Amsterdam (2004)
Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable coordination in sensor networks. In: Proceedings of the 5th International Conference on Mobile Computing and Networking, pp. 263–270. ACM, New York (1999)
Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a tiny aggregation service for ad-hoc sensor networks. In: 5th Annual Symposium on Operating Systems Design and Implementation (OSDI), pp. 1–16 (2002)
Hellerstein, J.M., Hong, C.-M., Madden, S., Stanek, K.: Beyond average: Toward sophisticated sensing with queries. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 63–79. Springer, Heidelberg (2003)
Klippel, A., Li, R.: The endpoint hypothesis: A topological-cognitive assessment of geographic scale movement patterns. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 177–194. Springer, Heidelberg (2009)
Guibas, L.J.: Sensing, tracking and reasoning with relations. IEEE Signal Processing Magazine 19(2), 73–85 (2002)
Worboys, M.F., Duckham, M.: Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographic Information Science 20(10), 1087–1108 (2006)
Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting topological change using a wireless sensor network. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 55–69. Springer, Heidelberg (2008)
Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. International Journal of Geographical Information Science 23(1), 33–60 (2009)
Sadeq, M.J.: In network detection of topological change of region with a wireless sensor network. PhD thesis, The University of Melbourne (2009)
Jiang, J., Worboys, M., Nittel, S.: Qualitative change detection using sensor networks based on connectivity information. GeoInformatica, 1–24 (2009) (accepted)
Shi, M., Winter, S.: Detecting change in snapshot sequences. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 219–233. Springer, Heidelberg (2010)
Liu, H., Schneider, M.: Tracking continuous topology changes of complex moving regions. In: 26th Annual ACM Symp. on Applied Computing, ACM SAC (2011)
Jin, G., Nittel, S.: Efficient tracking of 2D objects with spatiotemporal properties in wireless sensor networks. Distributed and Parallel Databases 29(1), 3–30 (2011)
Duckham, M., Nussbaum, D., Sack, J.R., Santoro, N.: Efficient, decentralized computation of the topology of spatial regions. IEEE Transactions on Computers 60 (2011), doi:10.1109/TC.2010.177 (in press)
Guan, L.J., Duckham, M.: Decentralized computing of topological relationships between heterogeneous regions. In: Lees, B., Laffan, S. (eds.) Proc. 10th International Conference on GeoComputation, Sydney, Australia (2009)
Duckham, M., Jeong, M.H., Li, S., Renz, J.: Decentralized querying of topological relations between regions without using localization. In: Agrawal, A.A.D., Mokbel, M., Zhang, P. (eds.) Proc. 18th ACM SIGSPATIAL GIS, pp. 414–417. ACM, New York (2010)
Duckham, M., Stell, J., Vasardani, M., Worboys, M.: Qualitative change to 3-valued regions. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 249–263. Springer, Heidelberg (2010)
Egenhofer, M., Sharma, g., Mark, D.: A critical comparison of the 4-intersection and 9-intersection models for spatial relations: Formal analysis. In: McMaster, R., Armstrong, M. (eds.) Autocarto 11, pp. 1–11 (1993)
Egenhofer, M.J., Franzosa, R.D.: On the equivalence of topological relations. International Journal of Geographical Information Systems 9(2), 133–152 (1995)
Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86(8), 621–630 (1979)
Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 71400 (1989)
Egenhofer, M.J., Sharma, J.: Topological relations between regions in R 2 and Z 2. In: Abel, D., Ooi, B.C. (eds.) SSD 1993. LNCS, vol. 692, pp. 316–336. Springer, Heidelberg (1993)
Winter, S.: Topological relations between discrete regions. In: Egenhofer, M., Herring, J. (eds.) SSD 1995. LNCS, vol. 951, pp. 310–327. Springer, Heidelberg (1995)
Galton, A.: Continuous change in spatial regions. In: Spatial Information Theory A Theoretical Basis for GIS, pp. 1–13. Springer, Berlin (1997)
Galton, A.: Continuous motion in discrete space. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference, pp. 26–37. Morgan Kaufmann Publishers, San Francisco (2000)
Egenhofer, M.: The family of conceptual neighborhood graphs for region-region relations. In: Fabrikant, S., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 42–55. Springer, Heidelberg (2010)
Egenhofer, M., Al-Taha, K.: Reasoning about gradual changes of topological relationships. In: Frank, A., Campari, I., Formentini, U. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)
Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley Series on Parallel and Distributed Computing. Wiley-Interscience, Hoboken (2006)
Mandelbrot, B.: Fractals, Form, Chance and Dimension. Freeman, San Francisco (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guan, LJ., Duckham, M. (2011). Decentralized Reasoning about Gradual Changes of Topological Relationships between Continuously Evolving Regions. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds) Spatial Information Theory. COSIT 2011. Lecture Notes in Computer Science, vol 6899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23196-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-23196-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23195-7
Online ISBN: 978-3-642-23196-4
eBook Packages: Computer ScienceComputer Science (R0)