Skip to main content

Spherical Nearest Neighbor Classification: Application to Hyperspectral Data

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

  • 2121 Accesses

Abstract

The problem of feature transformation arises in many fields of information processing including machine learning, data compression, computer vision and geoscientific applications. In this paper, we investigate the transformation of hyperspectral data to a coordinate system that preserves geodesic distances on a constant curvature space. The transformation is performed using the recently proposed spherical embedding method. Based on the properties of hyperspherical surfaces and their relationship with local tangent spaces we propose three spherical nearest neighbor metrics for classification. As part of experimental validation, results on modeling multi-class multispectral data using the proposed spherical geodesic nearest neighbor, the spherical mahalanobis nearest neighbor and the spherical discriminant adaptive nearest neighbor rules are presented. The results indicate that the proposed metrics yields better classification accuracies especially for difficult tasks in spaces with complex irregular class boundaries. This promising outcome serves as a motivation for further development of new models to analyze hyperspectral images in spherical manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachmann, C.M., Ainsworth, T.L., Fusina, R.A.: Exploiting manifold geometryin hyperspectral imagery, vol. 43, pp. 11–14 (2005)

    Google Scholar 

  2. Bao, Q., Guo, P.: Comparative studies on similarity measures for remote sensing image retrieval. In: IEEE International Conference on Systems, Man and Cybernetics (2004)

    Google Scholar 

  3. Benediktsson, J., Swain, P., Ersoy, O.K.: Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing 28(4) (July 1990)

    Google Scholar 

  4. Clark, R.N., Swayze, G.A., Koch, C., Gallagher, A., Ager, C.: Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption, vol. 1, pp. 60–62 (1992)

    Google Scholar 

  5. Coifman, R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis: Special issue on Diffusion Maps and Wavelets 21, 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, Boca Raton (2001)

    MATH  Google Scholar 

  7. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,Inference, and Prediction. Springer, New York (2009)

    Book  MATH  Google Scholar 

  9. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Book  MATH  Google Scholar 

  10. Kirillov, A.: Introduction to Lie Groups and Lie Algebras. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  11. Landgrebe, D., Biehl, L.: 220 band hyperspectral image: Aviris image indian pine test site 3 (1992)

    Google Scholar 

  12. Lee, J., Ersoy, O.K.: Consensual and hierarchical classification of remotely sensed multispectral images. IEEE Transactions on Geoscience and Remote Sensing 45(9) (September 2007)

    Google Scholar 

  13. Mitra, P., Nandy, S.C.: Efficient computation of rectilinear geodesic voronoi neighbor in presence of obstacles. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 76–87. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  15. Sandmeier, S.R., Middleton, E.M., Deering, D.W., Qin, W.: The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization, vol. 104, pp. 9547–9560 (1999)

    Google Scholar 

  16. Tibshirani, R., Hastie, T.: Discriminant adaptive nearest neighbor classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(6) (June 1996)

    Google Scholar 

  17. Wilson, R.C., Hancock, E.R., Pekalska, E., Duin, R.P.W.: Spherical embeddings for non-euclidean dissimilarities. In: CVPR Conference Proceedings, pp. 1903–1910 (June 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lunga, D., Ersoy, O. (2011). Spherical Nearest Neighbor Classification: Application to Hyperspectral Data. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics