arXiv:1106.1424v2 [cs.SY] 12 Sep 2011

Fixed-delay Events in Generalized
Semi-Markov Processes Revisitet

Tomas Brazdil, Jan Kiél, Jan Ketinsky**, and VojéchRehak

Faculty of Informatics, Masaryk University, Brno, CzechpRblic
{brazdil, krcal, jan.kretinsky, rehak}@fi.muni.cz

Abstract. We study long run average behavior of generalized semi-tiepko-
cesses with both fixed-delay events as well as variabler@etents. We show that
allowing two fixed-delay events and one variable-delay exn@y cause an unsta-
ble behavior of a GSMP. In particular, we show that a frequexia given state
may not be defined for almost all runs (or more generally, aariant measure
may not exist). We use this observation to disprove sevesllts from litera-
ture. Next we study GSMP with at most one fixed-delay eventidoed with an
arbitrary number of variable-delay events. We prove thahsu GSMP always
possesses an invariant measure which means that the foiepiai states are
always well defined and we provide algorithms for approxiorabf these fre-
guencies. Additionally, we show that the positive resigtmain valid even if we
allow an arbitrary number of reasonably restricted fixeligevents.

1 Introduction

Generalized semi-Markov processes (GSMP), introduceddaytids inl[22], are a stan-
dard model for discrete-event stochastic systems. Sucstarsyoperates in continuous
time and reacts, by changing its state, to occurrences afgueach eventis assigned a
random delay after which it occurs; state transitions magahdomized as well. When-
ever the system reacts to an event, new events may be sctiaddlpending events may
be discarded. To get some intuition, imagine a simple conication model in which a
server sends messages to several clients asking themyoTeplreaction of each client
may be randomly delayed, e.g., due to latency of commuwigéitiks. Whenever a re-
ply comes from a client, the server changes its state (eygipdating its database of
alive clients or by sending another message to the client)t@n waits for the rest of
the replies. Such a model is usually extended by allowingémeer to time-out and to
take an appropriate action, e.g., demand replies from tim@iréng clients in a more
urgent way. The time-out can be seen as another event which feed delay.

More formally, a GSMP consists of a s8tof states and a s& of events. Each
statesis assigned a séi(s) of eventsscheduledn s. Intuitively, each event itfiE(s) is
assigned a positive real number representing the amoumefuwthich elapses before
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the event occurs. Note that several events may occur at the 8me. Once a set of
eventsE C E(s) occurs, the system makedransitionto a new states’. The states’

is randomly chosen according to a fixed distribution whichetels only on the state
and the seE. In s, theold events of£(s) \ E(S) are discarded, ea¢hheritedevent of
(E(S)NE(9) \ E remains scheduled to the same point in the future, andreasbvent

of (E(S) \ E(9)) U (E(S) n E) is newly scheduled according to its given probability
distribution.

In order to deal with GSMP in a rigorous way, one has to imposeesrestrictions
on the distributions of delays. Standard mathematicablitee, such as [14,15], usually
considers GSMP with continuously distributed delays. Thisertainly a limitation, as
some systems with fixed time delays (such as time-outs orepsoc ticks) cannot be
faithfully modeled using only continuously distributedlales. We show some exam-
ples where fixed delays exhibit qualitativelyfidgrent behavior than any continuously
distributed approximation. In this paper we consider tHio¥ang two types of events:

— variable-delaythe delay of the event is randomly distributed according pooba-
bility density function which is continuous and positivéheir on a bounded interval
[£,u] or on an unbounded interval,[co);

— fixed-delaythe delay is set to a fixed value with probability one.

The desired behavior of systems modeled using GSMP can héfisgeby various
means. One is often interested in long-run behavior suchemmesponse time, fre-
quency of errors, etc. (see, e.@l, [1]). For example, in oya communication model,
one may be interested in average response time of clientsaverage time in which
all clients eventually reply. Several model independennfdisms have been devised
for expressing such properties of continuous time syst&msexample, a well known
temporal logic CSL contains a steady state operator expedequency of states
satisfying a given subformula. 101[9], we proposed to spelhg-run behavior of a
continuous-time process using a timed automaton whichreéseuns of the process,
and measure the frequency of locations of the automaton.

In this paper we consider a standard performance measer&etijuency of states
of the GSMP. To be more specific, let us fix a stateS. We define a random variable
d which to every run assigns the (discrete) frequency ofwisits on the run, i.e. the
ratio of the number of transitions enterisgo the number of all transitions. We also
define a random variabtewhich gives timed frequency «f i.e. the ratio of the amount
of time spent insto the amount of time spent in all states. Technically, bathiables
d andc are defined as limits of the corresponding ratios on prefixdbhe run that
are prolonged ad infinitum. Note that the limits may not berdefifor some runs. For
example, consider a run which alternates betwsamd another statg it spends 2 time
unit in § then 4 ins, then 8 ins, then 16 ins, etc. Such a run does not have a limit
ratio between time spent mand ins. We say thatl (or c) is well-defined for a run if
the limit ratios exist for this run. Our goal is to characterstable systems that have
the variablesd andc well-defined for almost all runs, and to analyze the prolighbil
distributions ofd andc on these stable systems.

As a working example of GSMP with fixed-delay events, we presesimplified
protocol for time synchronization. Using the variabJave show how to measure relia-
bility of the protocol. Via message exchange, the protoetd and keeps a client clock
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Fig. 1. A GSMP model of a clock synchronization protocol. Below eatdte label, we list the
set of scheduled events. We only display transitions thatalee place with non-zero probability.

sufficiently close to a server clock. Each message exchangdiadizgd by the client
asking the server for the current time, i.e. sendingarymessage. The server adds a
timestamp into the message and sends it backrasgpnseThis query-response ex-
change provides a reliable data fynchronizatioraction if it is realized within a given
round-trip delay Otherwise, the client has to repeat the procedure. Afterceess, the
client is considered to be synchronized until a gistable-time delaglapses. Since the
aim is to keep the clocks synchronized all the time, the tliestarts the synchroniza-
tion process sooner, i.e. after a giveolling delaythat is shorter than the stable-time
delay. Notice that the client gets desynchronized whenseeeral unsuccessful syn-
chronizations occur in a row. Our goal is to measure the poxi the time when the
client clock is not synchronized.

Figure[d shows a GSMP model of this protocol. The delays fipddn the proto-
col are modeled using fixed-delay everasindtrip_d, stable d, and polling_d while
actions are modeled by variable-delay eveqisry, responsgandsync Note that if
the stable-time runs out before a fast enough responsesythve systems moves into
primed states denoting it is not synchronized at the monTénts,c(Init’) + c(Q-sent)
expresses the portion of the time when the client clock issyothronized.

Our contribution. So far, GSMP were mostly studied with variable-delay events.
There are a few exceptions suchlgs]4.3,8,2] but they oftetacoerroneous statements
due to presence of fixed-delay events. Our goal is to studsfiéet of mixing a number
of fixed-delay events with an arbitrary amount of variabédag events.

At the beginning we give an example of a GSMP with two fixedagledvents for
which it is not truethat the variablesl andc are well-defined for almost all runs. We
also disprove some crucial statements| ¢fi[3,4]. In paicwe show an example of
a GSMP which reaches one of its states with probability lbas bne even though
the algorithms of{[8,4] return the probability one. The rak& of these algorithms is
fundamental as they neglect the possibility of unstablebien of GSMP.

Concerning positive results, we show that if there is at maostfixed-delay event,
then bothd andc are almost surely well-defined. This is true even if we allovagbi-
trary number of reasonably restricted fixed-delay evenesaldb show how to approxi-



mate distribution functions af andc. To be more specific, we show that for GSMP with
at most one unrestricted and an arbitrary number of resttifiked-delay events, both
variablesd andc have finite rangef, . . ., dy} and{c, . . ., cn}. Moreover, all values;
andc; and probabilities?(d = di) and®(c = ¢;) can be &ectively approximated.

Related work. There are two main approaches to the analysis of GSMP. Opngés t
strict the amount of events or types of their distributiond & solve the problems using
symbolic methods [Bl2,20]. The other is to estimate theamhf interest using simu-
lation [2614,15]. Concerning the first approach, time4tabed reachability has been
studied in [2] where the authors restricted the delays o so called expolyno-
mial distributions. The same authors also studied reatityapirobabilities of GSMP
where in each transition at most one event is inherlted [@jtHer, the widely studied
formalisms of semi-Markov processes (see, e.a] [19,9])@mtinuous-time Markov
chains (see, e.gl.[6,7]) are both subclasses of GSMP.

As for the second approach, GSMP are studied by mathem#ica a stan-
dard model for discrete event simulation and Markov chairmtd Carlo (see, e.g.,
[13[16,24]). Our work is strongly related fo |14} 15] whelie tong-run average behavior
of GSMP with variable-delay events is studied. Under reddyi standard assumptions
the stochastic process generated by a GSMP is shown to Badibde and to possess an
invariant measure. In such a case, the variathlasdc are almost surely constant. Be-
side the theoretical results, there exist tools that emgilmylation for model checking
(see, e.q.[126,10]).

In addition, GSMP are a proper subset of stochastic autqraateodel of concur-
rent systems (see, e.d., [11]). Further, as showin in [15MB 8ave the same modeling
power as stochastic Petri nets[[21]. The formalism of deit@stic and stochastic Petri
nets (DSPN) introduced by [20] adds deterministic traosgi— a counterpart of fixed-
delay events. The authors restricted the model to at mostetsministic transition
enabled at a time and to exponentially distributed timedsitaons. For this restricted
model, the authors proved existence of a steady statehdistmn and provided an al-
gorithm for its computation. However, the methods inhdyerely on the properties of
the exponential distribution and cannot be extended toeiting with general variable
delays. DSPN have been extended byl[12,18] to allow arBjtnarany deterministic
transitions. The authors provide algorithms for stea@dyestnalysis of DSPN that were
implemented in the tool DSPNEXxpress|[17], but do not discunster which conditions
the steady-state distributions exist.

2 Preliminaries

In this paper, the sets of all positive integers, non-nggatitegers, real numbers, pos-
itive real numbers, and non-negative real numbers are ddrintN, Ny, R, R.o, and
R0, respectively. For a real numbee R, int(r) denotes its integral part, i.e. the largest
integer smaller than, and fracf) denotes its fractional part, i.e— int(r). Let Abe a
finite or countably infinite set. Arobability distributionon Ais a functionf : A — Rsg
such thaty .5 f(a) = 1. The set of all distributions oA is denoted byD(A).



A o-field over a seR2 is a setF C 2° that includes? and is closed under comple-
ment and countable union. leasurable spads a pair @, ¥) whereQ is a set called
sample spacand¥ is ac-field over@2 whose elements are calledeasurable sets
Given a measurable spacg, (F), we say that a functiofi : 2 — R is a random vari-
able if the inverse image of any real interval is a measursdtieA probability measure
over a measurable space (F) is a functiorn® : # — R, such that, for each countable
collection{X;}ic; of pairwise disjoint elements of , we haveP(Uiq Xi) = Xia P(X)
and, moreoverP(Q) = 1. A probability spaceds a triple @, 7, %), where Q,F) is a
measurable space aftis a probability measure ove®(F). We say that a property
A C Q holds foralmost allelements of a measurable &eif P(Y) > 0,ANnY € F, and
P(ANY|Y) = 1. Alternatively, we say thah holdsalmost surelyor Y.

2.1 Generalized semi-Markov processes

Let & be a finite set okvents To everye € & we associate thiwwer bound/, € Ny
and theupper bound i € N U {co} of its delay. We say that is afixed-delayevent

if e = Ue, and avariable-delayevent if ¢ < Ue. Furthermore, we say that a variable-
delay eventis boundedf ue # o0, andunboundegdotherwise. To each variable-delay
evente we assign alensity functiond: R — R such thatffue fe(x) dx = 1. We assume
f to be positive and continuous on the whole, [is] or [fe, ) if € is bounded or
unbounded, respectively, and zero elsewhere. We requatefdthave finite expected
value, i.e.f{,:Je X+ fo(X) dX < co.

Definition 1. A generalized semi-Markov proceissa tuple(S, &, E, Sucg ag) where

— S is afinite set obtates

— &is afinite set ofevents

— E: S — 2% assigns to each state s a set of evéi(s) # 0 scheduledo occurin s,

— Succ :S x 26 — D(S) is thesuccessofunction, i.e. assigns a probability dis-
tribution specifying the successor state to each state ahdfsevents that occur
simultaneously in this state, and

— ap € D(S) is theinitial distribution

A configurationis a pair € v) wheres € S andv is avaluationwhich assigns to
every event € E(s) the amount of time that elapsed since the eeamas schedulefd.
For convenience, we definde) = L whenevere ¢ E(s), and we denote by(a) the
amount of time spent in the previous configuration (inijiadle puty(a) = 0). When
a set of event& occurs and the process moves frarito a states, the valuation of
old events ofE(s) \ E(S) is discarded taL, the valuation of eacinherited event of
(E(S) N E(9) \ E is increased by the time spent$nand the valuation of eaahew
event of E(S') \ E(s)) U(E(S) N E) is set to 0.

We llustrate the dynamics of GSMP on the example of Figlie L&t
the bounds of the fixed-delay eventeundtrip d, polling_d, and stabled be

L Usually, the valuation is defined to store the time left befire event appears. However, our
definition is equivalent and more convenient for the genseéting where both bounded and
unbounded events appear.



1, 90, and 100, respectively. We start in the stddée, i.e. in the configu-
ration (dle, ((polling_d, 0), (stable d, 0), (a,0))) denoting thaty(polling_d) = O,
v(stable d) = 0, v(a) = 0, and.L is assigned to all other events. After 90 time units,
the eventpolling_d occurs and we move tdr(t, ((query, 0), (stable d, 90), (a, 90))).
Assume that the evequeryoccurs in the stathnit after Q6 time units and we move to
(Q-sent((responsg0), (roundtrip_d, 0), (stable d, 90.6), (4, 0.6))) and so forth.

A formal semantics of GSMP is usually defined in terms of gehstate-space
Markov chains (GSSMC, see, e.d., [23]). A GSSMC is a stoahasbcessp over a
measurable state-spadg &) whose dynamics is determined by an initial meagure
on (I, G) and atransition kernel Pwhich specifies one-step transition probabiliffes.
A given GSMP induces a GSSMC whose state-space consist$ obrdlgurations,
the initial measurg: is induced byag in a natural way, and the transition kernel is
determined by the dynamics of GSMP described above. Foymall

— I'is the set of all configurations, amiglis ac-field overI” induced by the discrete
topology overS and the Boreb--field over the set of all valuations;

— the initial measurg allows to start in configurations with zero valuation onlg, i
for A € G we haveu(A) = Y szerqa) @o(S) whereZergA) = {s€ S| (s,0) € A};

— the transition kerneP(z A) describing the probability to move in one step from
a configuratiorez = (s,v) to any configuration in a seéi is defined as follows. It
suffices to consideA of the form{s'} x X whereX is a measurable set of valuations.
LetV andF be the sets of variable-delay and fixed-delay events, résphtthat
are scheduled is. LetF’ C F be the set of fixed-delay events that can occur as first
among the fixed-delay event enabledjmne. that have irv the minimal remaining
time u. Note that two variable-delay events occur simultaneowdtly probability
zero. Hence, we consider all combinationg&f V andt € R, stating that

Seev o Hit({e} 1) - Win({e}, ) dt —

P(Z’A):{zeev o' Hit({el. ) - Win({el. ) dt + Hit(F". ) - Win(F’,u)  otherwise,

where the term Hif, t) denotes the conditional probability of hittidgunder the
condition thatE occurs at time and the term Wi, t) denotes the probability
(density) ofE occurring at time. Formally,

Hit(E, t) = Succk E)() - 1[v' € X]

wherel[y’ € X] is the indicator function and' is the valuation after the transition,
i.e.v(e)is L, orv(e) +t, or O for each old, or inherited, or new eventrespec-
tively; andv’(a) = t. The most complicated part is the definition of WaR{) which
intuitively corresponds to the probability thitis the set of events “winning” the
competition among the events scheduled at timet. First, we define a “shifted”
density functionfg, (g that takes into account that the timig) has already elapsed.
Formally, for a variable-delay eveatand any elapsed timge) < ue, we define

fe(x + v(€))
Jre Tely) dy

2 Precisely, transition kernel is a functiéh: I" x G — [0, 1] such thatP(z -) is a probability
measure overl(,G) for eachz € I'; andP(-, A) is a measurable function for eaghe G.

fave(X) = if x> 0.



Otherwise, we defindg,(X) = 0. The denominator scales the function so that
fave is again a density function. Finally,

fav@® - [Teevie f favo®) dy if E={e}cV
WIN(E, 1) = < TTeev f; favio(y) dy fE=FCF
0 otherwise.
A run of the Markov chain is an infinite sequenee= zy z; z--- of configurations.
The Markov chain is defined on the probability spa@eq, ) whereQ is the set of

all runs,¥ is the product--field ®Zo G, and® is the unique probability measure such
that for every finite sequend®, - - - , A, € G we have that

P(Bocho, - . D) = f f 1(d2) - P20, 02) - - P(z0-1. Av)

20€A0 Zn-1€An1

where each®; is thei-th projection of an element i€2 (thei-th configuration of a run).
Finally, we define am-step transition kerneé®™ inductively asP(z A) = P(z A
andPi(z A) = [Pz dy) - P'(y, A).

2.2 Frequency measures

Our attention focuses on frequencies of a fixed ssateS in the runs of the Markov
chain. Leto = (s, vo) (S1,v1) - - - be arun. We define

i iLod(S) o Lo0(s) - visa(2)
d(o) = Ai@o 0 c(o) = r!l_rl]o in:0 (o)

whered(s) is equal to 1 whers = §, and 0 otherwise. We recall that.1(») is the
time spent in statg before moving tos,1. We say that the random varialdeor ¢ is
well-definedfor a rung if the corresponding limit exists far. Then,d corresponds to
the frequency of discrete visits to the sta@ntic corresponds to the ratio of time spent
in the states’

2.3 Region graph

In order to state the results in a simpler way, we introdueedfion graph a standard
notion from the area of timed automaita [5]. It is a finite ganti of the uncountable set
of configurations. First, we define the region relatiarFora, b € R, we say thatand

b agree on integral parif int(a) = int(b) and neither or both, b are integers. Further,
we set the boun8 = max({fe, Ue | € € E} \ {o0}). Finally, we put &, v1) ~ (S, v2) if

-5 =%

— for all e € E(s;) we have thaw;(e) andv,(e) agree on integral parts or are both
greater tharB;

— for all e, f € E(s1) with v1(e) < B andv,(f) < B we have that frasf(e)) <
frac(v1(f)) iff frac(v2(€)) < frac(vz(f)).
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Fig.2. A GSMP of a producer-consumer system. The evgnts andc model that a packet
production, transport, and consumption is finished, raspdy. Below each state label, there is
the set of scheduled events. The fixed-delay evprasdc havel, = u, = Ic = Uu. = 1 and the
uniformly distributed variable-delay evenhasl; = 0 andu; = 1.

Note that~ is an equivalence with finite index. The equivalence clas$esare called
regions We define a finiteegion graph G= (V, E) where the set of verticég is the set
of regions and for every pair of regioRsR there is an edgdR R) € Eiff P(ZR) > 0
for somez € R. The construction is correct because all states in the sagierrhave
the same one-step qualitative behavior (for details, sgeAgiB.1).

3 Two fixed-delay events

Now, we explain in more detail what problems can be causedby-ilelay events. We
start with an example of a GSMP with two fixed-delay eventsabich it is not true
that the variabled andc are well-defined for almost all runs. Then we show some other
examples of GSMP with fixed-delay events that disprove sagelts from literature.

In the next section, we provide positive results when thelmemand type of fixed-delay
events are limited.

When the frequencies d and ¢ are not well-defined

In Figure[2, we show an example of a GSMP with two fixed-delagnéy and one
variable-delay event for which it is not true that the valésidl andc are well-defined
for almost all runs. It models the following producer-com&r system. We use three
components — a producer, a transporter and a consumer oétsadkhe components
work in parallel but each component can process (i.e. p@dugnsport, or consume)
at most one packet at a time.

Consider the following time requirements: each packet petidn takesexactly
1 time unit, each transport takasmostl time unit, and each consumption takes again
exactlyl time unit. As there are no limitations to block the produités working for all
the time and new packets are produced precisely each timeAsrtihe transport takes
shorter time than the production, every new packet is imatetyi taken by the trans-
porter and no bfiier is needed at this place. When a packet arrives to the carstira
consumption is started immediately if the consumer is wgjtbtherwise, the packet
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Fig. 3. A GSMP with two fixed-delay eventg andc (with |, = up = | = uc = 1), a uniformly
distributed variable-delay evertts’ (with |; = |y = 0 andu; = uy = 1).

is stored into a bffier. When the consumption is finished and th&d&wuis empty, the
consumer waits; otherwise, a new consumption starts inmatedgli

In the GSMP in Figur&l2, the consumer has two modules — onedpénation and
the other idles at a time — when the consumer enters the wastate, it switches the
modules. The labels 1 and 2 denote which module of the conssrimeoperation.

One can easily observe that the consumer enters the watititeg(and switches the
modules) if and only if the current transport takes more tiimen it has ever taken.
As the transport time is bounded by 1, it gets harder and haodereak the record.
As a result, the system stays in the current module on avdéoadenger time than in
the previous module. Therefore, due to the successivelpipgong stays in the mod-
ules, the frequencies for 1-states and 2-states osciltateprecise computations, see
AppendiXA.d. We conclude the above observation by the fatig theorem.

Theorem 1. There is a GSMP (with two fixed-delay events and one varidélay
event) for which it is1ottrue that the variables andd are almost surely well-defined.

Counterexamples

In [3/4] there are algorithms for GSMP model checking basethe region construc-
tion. They rely on two crucial statements of the papers:

1. Almost all runs end in some of the bottom strongly conretctamponents (BSCC)
of the region graph.
2. Almost all runs entering a BSCC visit all regions of the gament infinitely often.

Both of these statements are true for finite state Markovnshdn the following,
we show that neither of them has to be valid for region grapi@IMP.

Let us consider the GSMP depicted in Figure 3. This is a predoaonsumer model
similar to the previous example but we have only one moduldhefconsumer here.
Again, entering the statg-waitingindicates that the current transport takes more time
than it has ever taken. In the st@@ewaiting an additional evertt can occur and move
the system into a stafink One can intuitively observe that we enter the statgaiting
less and less often and stay there for shorter and shorter H@nce, the probability



that the event’ occurs in the stat€-waitingis decreasing during the run. For precise
computations proving the following claim, see ApperidixIA.2

Claim. The probability to reacsinkfrom Init is strictly less than 1.
The above claim directly implies the following theorem tlisproving statement 1.

Theorem 2. There is a GSMP (with two fixed-delay and two variable delagnis)
where the probability to reach any BSCC of the region grapdtristly smaller than 1.

Now consider in Figurg]3 a transition under the everfitom the stateSinkto the
statelnit instead of the self-loop. This turns the whole region gragppd & single BSCC.
We prove that the stat8inkis almost surely visited only finitely often. Indeed, let
p < 1 be the original probability to reachink guaranteed by the claim above. The
probability to reactSinkfrom Sinkagain is als@ as the only transition leading from
Sinkenters the initial configuration. Therefore, the prob&biid reachSinkinfinitely
often is limy_. p" = 0. This proves the following theorem. Hence, the statement 2
of [3l4] is disproved, as well.

Theorem 3. There is a GSMP (with two fixed-delay and two variable delagnis)
with strongly connected region graph and with a region tisatsached infinitely often
with probabilityO.

4 Single-ticking GSMP

First of all, motivated by the previous counterexamplesideatify the behavior of the
fixed-delay events that may causendc to be undefined. The problem lies in fixed-
delay events that can immediately schedule themselvesevbethey occur; such an
event can occur periodically like ticking of clocks. In theaenple of Figur&3, there are
two such eventp andc. The phase dierence of their ticking gets smaller and smaller,
causing the unstable behavior.

For two fixed-delay eventsande, we say thae causes’df there are states, s
and a set of events such that Suce&( E)(s)>0, e € E, ande' is newly scheduled is'.

Definition 2. A GSMP is calledsingle-tickingif either there is no fixed-delay event
or there is a strict total ordek on fixed-delay events with the least element e (called
ticking event) such that whenever f causes g then eithegfor f =g =e.

From now on we restrict to single-ticking GSMP and prove oaimpositive result.

Theorem 4. In single-ticking GSMP, the random variabldsand c are well-defined
for almost every run and admit only finitely many values. Redg, almost every run
reaches a BSCC of the region graph and for each BSCC B thereaduwes dc € [0, 1]
such thad(o) = d andc(o) = ¢ for almost all runsr that reach the BSCC B.

The rest of this section is devoted to the proof of Thedrémirt,Fve show that
almost all runs end up trapped in some BSCC of the region giagtond, we solve
the problem while restricting to runs thstiartin a BSCC (as the initial part of a run
outside of any BSCC is not relevant for the long run averagatier). We show that in
a BSCC, the variabled andc are almost surely constant. The second part of the proof
relies on several standard results from the theory of géstat® space Markov chains.
Formally, the proof follows from Propositioh$ 1 aid 2 stabetbw.
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4.1 Reachinga BSCC

Proposition 1. In single-ticking GSMP, almost every run reaches a BSCCeofehion
graph.

The proof uses similar methods as the proofin [4]. By definitthe process moves
along the edges of the region graph. From every region, teereninimal path through
the region graph into a BSCC, Ietbe the maximal length of all such paths. Hence, in
at mostn steps the process reaches a BSCC with positive probabiiity iny config-
uration. Observe that if this probability was bounded fragiolv, we would eventually
reach a BSCC from any configuration almost surely. Howebés, grobability can be
arbitrarily small. Consider the following example with e¢e uniform on [Q 1] and
eventf uniform on [2 3]. In an intuitive notation, lIeR be the region [k e < f < 1].
What is the probability that the eveatoccurs after the elapsed time 6freaches 1
(i.e. that the regiond = 0; 1 < f < 2] is reached)? For a configurationkwith val-
uation (€, 0.2), (f,0.7)) the probability is & but for another configuration iR with
((e,0.2), (f,0.21))itis only Q01. Notice that the transition probabilities depend on the
difference of the fractional values of the clocks, we call thifedenceseparation Ob-
serve that in other situations, the separation of clock® fvalue 0 also matters.

Definition 3. Lets > 0. We say that a configuratiofs, v) is 6-separatedf for every
XY € {0} U {v(€) | e € E(9)}, we have eithelfrac(x) — frac(y)| > ¢ or frac(x) = frac(y).

We fix a¢ > 0. To finish the proof using the concept&beparation, we need two
observations. First, froranyconfiguration we reach im steps a-separated configura-
tion with probability at least| > 0. Second, the probability to reach a fixed region from
any §-separated configuration is bounded from below by s@me 0. By repeating
the two observations ad infinitum, we reach some BSCC alnuostys Let us state the
claims. For proofs, see AppendixB.2.

Lemma 1. There is§ > 0, m € N and q> 0 such that from every configuration we
reach ag-separated configuration in m steps with probability at tegs

Lemma 2. For everys > 0 and ke N there is p> 0 such that for any pair of regions R,
R connected by a path of length k and for angeparated R, we have Rz R) > p.

Lemmd2 holds even for unrestricted GSMP. Notice that Lefdaek not. As in
the example of Figurlg 3, the separation may be non-incrgésirall runs.

4.2 Frequencyina BSCC

From now on, we deal with the bottom strongly connected camepts that are reached
almost surely. Hence, we assume that the region g@jh strongly connected. We
have to allow an arbitrary initial configuratiag = (s, v); in particular,y does not have
to be a zero vectd.

3 Technically, the initial measure jgA) = 1 if zy € Aandu(A) = 0, otherwise.
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Proposition 2. In a single-ticking GSMP with strongly connected regiongrathere
are values dc € [0, 1] such that for any initial configurationyzand for almost all runs
o starting from 3, we have thatl andc are well-defined and(c") = d andc(o) = c.

We assume that the region graph is aperiodic in the follovgmgse. Aperiod p
of a graphG is the greatest common divisor of lengths of all cycle&inThe graph
G is aperiodicif p = 1. Under this assumptiﬂnthe chain® is in some sense stable.
Namely, (i) @ has a unique invariant measure that is independent of ttial imeasure
and (i) the strong law of large numbers (SLLN) holds @r

First, we show that (i) and (ii) imply the proposition. Let rexall the notions. We
say that a probability measureon (I, G) is invariantif forall Ae G

n(A) = f a(dX)P(x, A).
r
The SLLN states that ifi : I' — R satisfiesE,[h] < oo, then almost surely
L1 (1)
n

lim

n—oo

= En[h]’ (1)

whereE,[h] is the expected value dfaccording to the invariant measure
We seth as follows. For a rung, vo)(sy, v1)---, leth(®) = 1if s = $and 0,
otherwise. We have,[h] < c sinceh < 1. From [1) we obtain that almost surely
0 h(d;
d = lim —2':1n( )

n—oo

= Efhl.

As a resultd is well-defined and equals the constant vali gh] for almost all runs.
We treat the variable similarly. LetW((s, v)) denote the expected waiting time of the
GSMP in the configurations(v). We use a function((s,v)) = W((s,v)) if s = $and

0, otherwise. Since all the events have finite expectatienhaveE,[W] < o and
E;[7] < o. Furthermore, we show in AppendixB.3 that almost surely

_ . Zinzl 7(®i) _ Ex[7]
¢ = MSTW@) - B

Thereforec is well-defined and equals the constanfr]/E,[W] for almost all runs.

Second, we prove (i) and (ii). A standard technique of gdrstade space Markov
chains (see, e.gl, [23]) yields (i) and (ii) for chains thatisfy the following condition.
Roughly speaking, we search for a set of configurat®tizat is visited infinitely often
and for some the measureB!(x, -) andP(y, -) are very similar for any,y € C. This
is formalized by the following lemma.

Lemma 3. There is a measurable set of configurations C such that
1. there is ke N anda > 0 such that for every & I we have Bz C) > «, and

4 If the region graph has perigal> 1, we can employ the standard technique and decompose the
region graph (and the Markov chain) inpoaperiodic components. The results for individual
components yield straightforwardly the results for the lghdarkov chain, see, e.gLJ[9].
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2. there ist € N, 8 > 0, and a probability measure such that for every 2 C and
A e Gwe have Bz A) > - «(A).

Proof (Sketch)Let e be the ticking event anB some reachable region whezés the
event closest to its upper bound. We fix dgiently smalls > 0 and choos€ to be the
set ofg-separated configurations Bf We prove the first part of the lemma similarly to
Lemmatd ]l andl2. As regards the second part, we define the ragasuiformly on a
hypercubeX of configurationsg v) that have/(e) = 0 andv(f) € (0, ), for f # e. First,
assume thatis the only fixed-delay event. We fix= (S,v) in R; letd = ug—v'(€) > §
be the time left ire beforee occurs. For simplicity, we assume that each variable-delay
events can occur after an arbitrary delag (d — 6, d). Precisely, that it can occur in
an g-neighborhood ofk with probability bounded from below b - € whereg is the
minimal density value of al. Note that the variable-delay events can be “placed” this
way arbitrarily in (Q6). Therefore, wher occurs, it has value 0 and all variable-delay
events can be in interval (6). In other words, we have‘(z, A) > - x(A) for any
measurablé\ C X and for¢ = |&|.

Allowing other fixed-delay events causes some trouble sradixed-delay event
f # e cannot be “placed” arbitrarily. In the total order, the eventf can cause
only strictly greater fixed-delay events. The greatest fidethy event can cause only
variable-delay events that can be finally “placed” arbilyaas described above. 0O

5 Approximations

In the previous section we have proved that in single-tigkBSMP,d andc are al-
most surely well-defined and for almost all runs they attaily dinitely many values
di...,dg andcy,...,c, respectively. In this section we show how to approxinthte
andc;’s and the probabilities that andc attain these values, respectively.

Theorem 5. In a single-ticking GSMP, letd. ..,di and g, ... ., ¢ be the discrete and
timed frequencies, respectively, corresponding to BSGQseoregion graph. For all
1 < i < k, the numbers;dand g as well as the probabilitie®(d = d;) andP(c = ¢)
can be approximated up to amy> 0.

Proof. Let Xy, ..., Xk denote the sets of configurations in individual BSCCs @rahd
¢ correspond t. Since we reach a BSCC almost surely, we have
k k
P(d=d)= ZP(d = di | ReaclfX;)) - P(ReacliX;)) = 1[d; = di] - P(ReaclX;))
j=1 j=1
where the second equality follows from the fact that almdstuas in the j-th BSCC
yield the discrete frequenay;. ThereforeP(d = d;) andd; can be approximated as
follows using the methods df [24].

Claim. Let X be a set of all configurations in a BSCE; Xg C X the set of config-
urations with states,"andd the frequency corresponding # There are computable
constantsi;, n; € N andp, p2 > 0 such that for everiye N andzyx € X we have

|P(ReacliX)) — P'(z, X)| < (1- py)ti/ml
Id - Pi(zx, Xg)| < (1— p)li/m!
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Further, we want to approximatg = E,[7]/E,[W], wherer is the invariant measure
onX;. In other words, we need to approximj;(ier(x)n(dx) andfxi W(X)mr(dX). An n-th
approximationw, of E,[W] can be gained by discretizing the part of the state space
{(s,v) e I' | Ye e E(9) : v(€) < n}into, e.g., ¥n-large hypercubes, where the invariant
measurer is approximated using". This approximation convergesk[W] sinceW is
continuous andE,[W] is finite. For the details of the following claim, see Appén@l

Claim. On each region\V is continuous, ané,[W] is finite.

This concludes the proof aonly differs fromW in being identically zero on some
regions; thusk,[7] can be approximated analogously.

6 Conclusions, future work

We have studied long run average properties of generalieed-Blarkov processes
with both fixed-delay and variable-delay events. We havevshtbat two or more (un-

restricted) fixed-delay events lead to considerable caratidins regarding stability of
GSMP. In particular, we have shown that the frequency oéstat a GSMP may not be
well-defined and that bottom strongly connected compongfitse region graph may
not be reachable with probability one. This leads to cowxt@mples disproving sev-
eral results from literature. On the other hand, for singlking GSMP we have proved
that the frequencies of states are well-defined for almdstuak. Moreover, we have
shown that almost every run has one of finitely many possielguencies that can be
effectively approximated (together with their probabili}iap to a given error tolerance.

In addition, the frequency measures can be easily extendedtie mean payb
setting. Consider assigning real rewards to states. The peadt then corresponds to
the frequency weighted by the rewards.

Concerning future work, the main issue i§i@ency of algorithms for computing
performance measures for GSMP. We plan to work on both battlytical methods
as well as practicable approaches to Monte Carlo simula@oe may also consider
extensions of our positive results to controlled GSMP andegmon GSMP.
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A Details on counterexamples

Definition 4. Adistanceof two events e and f (in this order) in a configurati®w) is
frac(/(f) — v(e)) .

A.1 When the frequencies d and ¢ are not well-defined: Proof ofheorem[1

In the following, we prove that in our exampieandc are not well-defined for almost
all runs. Namely, that there is a set of runs with positive snea such that for these
runs the partial sums oscillate.

After setting the initial distance of evengsandc, every run stays in the 1-states
(labeled with 1) until the distance is lessened in the f&ewaiting This sojourn in the
1-states s called the firphase Then the run continues with the second phase now in the
2-states until the distance is lessened again and it mowésb4 -states and begins the
third phase etc. Each phase consists of repeating setezaiptsi.e. running through
the cycle of length three. In each attempt the distance ge#dler with probability
d (whered is the current distance) and stays the same with probalilityd due to
the uniform distribution ot. This behavior corresponds to the geometric distribution.
The density on the new distance is uniform on the whiblé phase is calledtrong
if the newly generated distance is at most half of the old énether, we define a
half-life to be a maximum continuous sequence of phases where exazilyst one is
strong. Every run can thus be uniquely decomposed into eeseguof half-lives. The
random variable stating the distance at the beginning of-tiephase of thé-th half-
life is denotedD; ;. Denoting the number of phases in tiath half-life by L(i) we get
Dn-1G) = 2Dn1. Thus by induction, we have for aili e Nandj < L(n-1i),

Dnij > 2. Dna (2

Further, letS ; be the number of attempts in theh phase of thé-th half-life, i.e. a
lengthof this phase. We can now prove the following lemma. Rougpgeging, there
are runs (of overall positive measure) where some phasedgtdhan the overall length
of all phases up to that point. Note that the precise statewfetne lemma implies
moreover that this happens even infinitely often on runs efalvpositive measure.

Lemma 4. There area > 0 and m> 0, such that for every - 1 there is a seRR, of
measure at least m of runs satisfying

Suzae Y S
i=1.n-1
j=1..L@)
Proof. We sete = 2/(3-(6+2-3)) = 1/18 andm = 1/4 and letn > 1 be arbitrary. We
define the seR, to be the set of all runs such that the following conditions hold:

1. S1> 1/(2Dny),
(the length of the “last” phase is above its expecation),
2. foralll<i<n,L(@)<(n-i)+3,
(previous half-lives have no more phases than2,n+ 1,...,5, 4, respectively),
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3. foralll1<i<nand 1< j<L(i), S <3(n-i)/Dij,
(all phases in previous half-lives are short w.r.t theirentptions).
DenoteD := D We firstly prove tha1 > @ 3i-1 n-1j-1..) S.j forall runsinR,.

Due to the inequality{2) and requirements 2. and 3., we candbthe overall length of
all previous phases by

3)-3 O (i .3' 36+2-3) 1
ZS;—Z(H.) I Z - (+D ):Za/D

i=1l.n-1 i=
j=1.L(30)

and conclude by the requirement 1.
It remains to prove that measure ®f is at leastm. We investigate the measures
of the runs described by requirements 1.—-3. Firstly, théogodity thatS,, > 55— is

(1 - Dpn1)¥2Pn1, which approaches/y/e asn approaches infinity and is thus greater
than /2 for D1 < 1/2, i.e. forn > 2. Out of this set of runs of measur¢2lwe need
to cut df all runs that do not satisfy requirements 2. or 3. As for 2, phobability
of i-th half-life failing to satisfy 2. is (12)")*3 corresponding to at leash ¢ i) + 3
successive non-strong phases. Therefore, 2. ditgp; 1/20)+3 = y1-11/21+3 <
>2,1/2+3 = 1/28. From the remaining runs we need to ctit all runs violating 3.
Since the probability of eac§ ; failing is (1 - D; ;)3/Pii, the overall probability of
all violating runs is due tb]2 at most

n-1 L(i) ) n-1 L(n-i) ) n-1 L(n-i) ) o
Z Z(l — D)3/ = Z Z (1= Dy )3P0 < (1-2D)3/2P
i=1 =1 i=1 j=1 i=1 j=1

n-1
< ;(i +3)(1-2'D)¥/2P < ;(i +3)(1/e)¥

4¢3 -3
=——<1/4
@17 <"
Altogether the measure & is at leasm=1/2-1/8-1/4=1/8. O

Due to the previous lemma, moreover, there is asef runs of positive measure
such that each run ® is contained in infinitely mangy’s.

Let us measure the frequency of 1-states (we slightly athesedtation and denote
by d(c) andc(o) the sum of frequencies of all 1-states instead of one sisigles.
We prove that neithed(o”) nor c(o) is well-defined on any- € R. Since attempts last
for one time unit, non-existence dfo) implies non-existence af(c). Thus, assume
for a contradiction thatl(o) is well-defined. Denote the number of attempts in the
i-th phase. Because 1-states are visited exactly in odd phasédhave

d(c) = lim 2= 00d)
n—oo i= lS

whereodd(i) = 1 if i is odd and 0 otherwise. By the definition of limit, for every- 0
there isng such that for alh > ng

iy s -oddi) 37 s odd(l)
Zin:ls | 1 S

(3)
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Due to the lemmas, > a Yi-1 n-1 S happens for infinitely many both odd and even
phasesiono € R. Now letd(o) < 1/2, the other case is handled symmetrically. Let

¢ be such thatr > #M and we choose an odd> ng satisfyings, > aziz‘l S >

o 2 §- DenotingA = Y1 's andO = $lt}'s - odd(i) we get from([(B) that
O+s, O Ot O & (1_9)
A+S’1 A A+#MA A B 1—d(0’)—8 A
(%) &
> - . —_ —_ =
> T-do) -+ Q-d(o)-¢) £

which is a contradiction with{3). Notice that we omitted thlesolute value from{3)
because for an odd the term is non-negative. The equality) {s a straightforward
manipulation. In ¢x) we use, similarly to[(]3), tha§ —d(o)| < &.

A.2 Counterexamples: Proof of Claim

In the following, we prove that the probability to reach thegeSinkis strictly less than
1.

Similarly as in the proof of Theorefd 1, we introduce phases laalf-lives and
proceed with similar but somewhat simpler argumentsdlls the distance of evenps
andc. Note that 1-d is the maximum length of transportation so far. The initiatance
is generated in the statg-waiting with a uniform distribution on (0L1). After that,
the distance gets smaller and smaller over the time (if werigthe states where the
distance is not defined) whenever we enter the Sataiting Each sequence between
two successive visits dE-waiting on a run is called ghaseof this run. After each
phase the current distance is lessened. The density onwhdisince is uniform on
the wholed. A phase is calledtrongif the newly generated distance is at most half
of the old one. Further, we definehalf-life to be a maximum continuous sequence of
phases where exactly the last one is strong. Every run carbéhuniquely decomposed
into a sequence of half-lives (with the last segment beirgsidy infinite if C-waiting
is never reached again). The random variable stating tleendis at the beginning of the
i-th half-life is denoted byD;. By definition,D; < D;_1/2 and by induction, for every
run with at least half-lives _

Di <1/2'. 4

Denoting the number of phases in thih half-life by L (i), we can prove the following
lemma.

Lemma 5. There is m> 0 such that for every i+ 1 the setR, of runso- satisfying

1. o does not visiSink during the first n half-lives, and
2. for everyl < i < n not exceeding the number of half-livesofL(i)(o) < 2-i

has measure at least m.
This lemma concludes the proof, as there is a set of runs ofumeat leasin that never

reach the stat8ink We now prove the lemma.
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Firstly, for everyn we bound the measure of runs satisfying the second condition
The probability that Rconsecutive phases are not strong, li@ > 2i, is 1/2% ast is
distributed uniformly. Therefore, the probability thaetk isi < nwith L(i) > 2i is less
thany", 1/22. This probability is thus for alh € N less thar}, >, 1/2% = 1/3. Hence,
for eachn at least 23 of runs satisfy the second condition.

Secondly, we prove that at least of runs satifying the second condition also satisfy
the first condition. This concludes the proof of the lemmanass independent ofi (a
precise computation reveals that > 0.009).

Recall thatD; < 1/2' and we assume tha(i) < 2i. Therefore, the probability that
Sinkis not reached during theth half-life is at least (+ 1/2')? ast’ is distributed uni-
formly and the distance can only get smaller during the li@fHence, the probability
that in none of the firah half-livesSinkis reached is at least

ﬁ(l _ 1/2i)2i
i=1

Thus, for everyn, the probability is greater thaj[;2, (1 - 1/2)2 =: Y. It remains to
show thatn > 0. This is equivalent tg">; In(1 — 1/2')% > —co, which in turn can be

rewritten as .
o 2
ZiEllm(zi _1) <

Sincey?, 1/i% converges, it is diicient to prove that

|n(2i2_i1) e 0(1/i%).

We get the result by rewriting the term in the form of an apjpration of the derivative
of Inin 2' — 1 which is smaller than the derivative of In ih-21 because In is concave

In(%) _ |n(2i)—|1n(2i—1)

< In@2-1) = e O(1/i%).

1
2 -1

B Proofs of Sectiorf 4

In this section, by sayingalue of an evente, we mean the fractional part fra€¢))
when the valuatiom is clear from context. Furthermore, by we denote the sum af
of all fixed-delay events.

B.1 Correctness of the region graph construction

The correctness of the region graph construction is baséukediact that configurations
in one region can qualitatively reach the same regions irsteme

Lemma 6. Let z ~ Z be configurations and R be a region. We hag R) > O iff
P(z,R) > 0.
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Proof. For the sake of contradiction, let us fix a regi@rand a pair of configurations
z~ 7 suchthaP(z R) > 0 andP(Z,R) = 0. Letz = (s, v) andZ = (s,v').

First, let us deal with the fixed-delay events. Let us assuna¢ the part of
P(z R) contributed by the variable-delay eventsis zero, i.e.) vy fom Hit({e}, 1) -
Win({e},t) dt = 0. Then the seE of fixed-delay events scheduled with the minimal
remaining time ire must be non-empty, i.e. sonee= E. We have

P(z R) = SuccK E)(S)-1[veR]- 1_[ ) favo(y) dy>0

ceV VY VE

PZ.R) =Succk B)S) 17 <R[ | [ “; fovoy) dy =0

cev UM

wheres' is the control state of the regidR andv andv” are the valuations after the
transitions fromz andZ, respectively. It is easy to see that fram- Z we get that
v € Riff vV € R Hence,P(z R) andP(Z, R) can only difer in the big product. Let us
fix anyc € V. We show thagfvz) fov o () dyis positive. Recall that the density function
fc can qualitatively change only on integral values. Bomdz have the same order
of events’ values. Hence, the integral is positive forft it is positive forv. We get
P(Z,R) > 0 which is a contradiction.

On the other hand, let us assume that there is a variablg-eedate € V such that

j:o Succk {e})(S) - vt € Rl - faye(t) - 1_[ j:w fon(o(y) dy dt> 0

ceV\{e}

wherey; is the valuation after the transition fromwith waiting timet. There must be
an intervall such that for every € | we have thaffy,(t) is positive,1[v; € R] = 1,
andftm favo(y) dy > 0 for anyc € V \ {e}. From the definition of the region relation,
this intervall corresponds to an interval between two adjacent eventsSincez ~ 7,
there must be also an intervill such that for every € I’ we have thatfy, ¢ (t) is
positive,1[v{ e R] = 1, andJ[oo fav(o(y) dy > O foranyc € V\ {e}. Hence,P(Z,R) > 0,
contradiction. O

B.2 Proof of Proposition[1

Lemmall. Thereiss > 0, m € N andqg > 0 such that from every configuration we
reach a-separated configuration m steps with probability at least

Proof. We divide the [01] line segmentinto 3&|+ 1 slots of equal length. Eachvalue
of a scheduled event lies in some slot. We show how to reachfigooation where the
values are separated by empty slots.

As the time flows, the values shift along the slots. When amtevecurs, values of
all the newly scheduled events are placed to 0. The varidgliey events can be easily
separated if we guarantee that variable-delay events ateur interval of time when
the first and the last slots of the line segment are empty.
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We let the already scheduled variable-delay events ocbitrauily. For each newly
scheduled variable-delay event we place a token at the ead empty slot with its
left and right neighbour slots empty as well (i.e. there igloek’s value nor any other
token in these three slots). Such slot must always exisedimere are more slots that
3-1&]. As the time flows we move the tokens along with the eventsiesl Whenever
a token reaches 1 on the,[J line segment, we do the following. If the valuation of
its associated event is not between its lower and upper haumdove the token to 0
and wait one more time unit. Otherwise, we let the associetedt occur from now
up to timeé. Indeed, for any moment in this interval, the first and thé $ats of the
line segment are empty. The probability that all variabdéagl events occur in these
prescribed intervals is bounded from below because evéeaisities are bounded from
below.

The fixed-delay events cause more trouble because they atauiixed moment;
possibly in an occupied slot. If a fixed-delay event alwaysesiles itself (or there is
a cycle of fixed-delay events that schedule each other)alteewcan never be separated
from another such fixed-delay event. Therefore, we havddunburselves to at most
one ticking evene. Observe that every other event has its lifetime — the lenfthe
chain of fixed-delay events that schedule each other. Tagntié of any fixed-delay
event is obviously bounded by which is the sum of delay of all fixed-delay events in
the system. After timév, all the old non-ticking events “die”, all the newly scheeldil
non-ticking events are separated because they are ni@ieduled by a variable-delay
event. Therefore, we let the variable-delay events occexpkined above fam steps
such that it takes more thavl time units in total. We setn = [M/§] since each step
takes at leasi time. O

Lemmald. For everys > 0 andk € N there isp > 0 such that for any pair of regiomi%
R connected by a path of lengitand for anys-separated € R, we haveP¥(z, R) > p.
FurthermorePX(z, X) > pwhereX C R’ is the set of §/3")-separated configurations.

Proof. Letz e Ry, k e N, andRy, Ry, . . ., R be a path in the region graph to the region
R = R«. We can follow this path so that in each step we lose two thifdise separation.
At last, we reach as(/3)-separated configuration in the target regitya We get the
overall bound on probabilities from bounds on every step.

In each step either a variable-delay event or a set of fixéayd®ents occur. Let
¢’ be the separation in the current step. To follow the regiah,pa specified event
must occur in an interval between two specified values whield’aseparated. A fixed-
delay event occurs in this interval for sure because it has Beheduled this way. For
a variable-delay event, we divide this interval into thimtsd let the event occur in
the middle subinterval. This happens with a probability tded from below because
events’ densities are bounded from below. Furthermoreltov the path in the region
graph, no other event can occurs sooner. Every other everttheast’ /3 to its upper
bound; the probability that it doe®t occur is again bounded from below. O

B.3 Proof of Proposition[2
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Proposition[2. In a single-ticking GSMP with strongly connected regiongrathere
are valuedl, c € [0, 1] such that for any initial configuratiazy and for almost all runs
o starting fromz, we have thatl andc are well-defined and(c) = d andc(o) = c.

Proof. First, we show using the following lemma thathas a unique invariant measure
and that the Strong Law of Large Numbers holdsdonWe prove the lemma later in
this subsection.

Lemmal[3. There is a measurable set of configurati@nsuch that

1. there isk e N anda > 0 such that for every e I we havePX(z, C) > «, and
2. there ist € N, 8 > 0, and a probability measukesuch that for everg € C and
A e G we haveP!(z A) > - (A).

A direct corollary of Lemmal3 is that the set of configuratitmsmall

Definition 5. Letne N, £ > 0, and« be a probability measure off’, G). The set’" is
(n, &, )-smallif for all z € I and A€ G we have that P(z A) > - v(A).

Indeed, we can set= k + £ ande = @ + 8 and we get the condition of the definition.
Corollary 1. Thereis ne N, ¢ > 0, andk such that" is (n, &, k)-small.

From the fact that the whole state space of a Markov chain &lsme get the
desired statement using standard results on Markov chaigeeral state space. We
get that® has a unique invariant measureand that the SLLN holds fo®, see [[9,
Theorem 3.6].

From the SLLN, we directly get that = E,[6]. Now we show that = EE[[\;}] . Let
us consider a rursf, vo) (1, v1) - - - - By t; we denotej,1(a) — the time spent in thieth

state. We have

L Zed(s) -t Bed(s) b n o limnsw (Sl 8(s) - 6)/n
o) = I S T T T T T imme (o )/

=k

 EdW]

The fact that(o) is well-defined follows from the end which justifies the nyaunlations
with the limits. It remains to explain the last equality. Stjrlet is divide the space of
configurations into a gric€Cs. Eacho € C; is a hypercube of configurations of unit
lengthé. By z, we denote théth configuration of the run. We obtain

n
o ti .
lim —Z"O L = lim

n—oo n n—oo

Z Yiollz €] -t

oeCs n

- Yiolzen]-t . Nilolzen]

0eCs

(*)

The second limit equals by the SSLN/(). By takingé — 0 we get that#€) = E,[W].
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By similar arguments we also get that

lim Yitod(s) - ti

n—oo n

= Eﬂ'[T]
]
For the proof of Lemm@l3 we introduce several definitions anwauxiliary lemmata.

Definition 6. A path(so, vo) - - - (Sn, vn) IS 6-wide if for eveny0 < i < n the configuration
(s, n) is 6-separated and for evely < i < n any every bounded variable-delay event
e € E(s) we haveyi(e) + vi,1(a) < U — 6, i.e. no variable-delay event gei€lose to its
upper bound.

We say that a patlisp, vo) - - - (Sh, vn) has a tracesgE;S1E;1---EnSy if § = s for
every0 < i < nand for everny0 < i < n we can get fron{s_1, vi_1) to (s, vi) via
occurrence of the set of eventsditer timev;(a).

A path(so, vo) - - (Sn, vn) has atotal timet if t = 3, vi(a).

The idea is that &-wide path can be approximately followed with positive pablt-
ity. Furthermore, as formalized by the next lemma, if we hdifiierents-wide paths to
the same configuratiari that have the same length and the same trace, we have similar
n-step behavior (on a set of states specified by some megsure

Lemma 7. For any§ > 0O, any n € N, any configuration(s,, v»), and any trace

SE;1 - - - Ens, there is a probability measureandg > 0 such that the following holds.
For everyés-wide path(sp, vo) - - - (S, vn) With trace T = sE; - - - Ens, and total time

t > M and for every Ye G we have P((so, vo), Y) = - k(Y).

Proof. Recall thatB = max({fe, Ue | € € &} \ o). Notice that the assumptions on the
events’ densities imply that all delays’ densities are lmehby somee > 0 in the
following sense. For every € & and for allx € [0, B], d(x) > ¢ or equals 0. Similarly,
J5 d(x)dx> cor equals 0.

We will find a set of configurationg “around” the statez, = (s, vn) and define
the probability measure on this setZ such tha(Z) = 1. Then we show for each
measurabl& C Z the desired property.

Intuitively, configurations aroungj, are of the form §,, ") where eachr’(e) is either
exactlyv(e) or in a small interval around,(€). We now discuss which case applies to
which evente for a fixed traceT . All the following notions are defined with respect to
T. We say that the ticking eveqtis active until the i-th steff g € E(s) N ---NE(S-1).
We say that an eveete E(s,) U E, U {a} is originally scheduled in the i-th step byiff

— eitherf = gandg is active until the-th step orf is a variable-delay event; and
— thereisk > 1 and a chain of eventg € E,,...,& € E; such thae; = f, ¢, =1,
all ey, ..., e are fixed-delay events, occurence of e&ghnewly schedules.,,
occurence ok, newly schedules, ande € E(s;,) N---NE(Sw-2) N (E(S-1) U{a}).

Recall that the special valuation symhotienoting the lenght of the last step is also
part of the state space. Notice that in the previous defmitie treata as an event that
is scheduled only in the statg ;. We say thathe last step is variablé E, is either a
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singleton of a variable-delay event or all the eventEjrare originally scheduled by a
variable-delay event. Otherwise, we say ttiet last step is fixed

Intuitively, we cannot alter the value of an everdn the tracel (i.e.,v'(e) = v(€))
if the last step is fixed and is originally scheduled by the ticking event. In all other
cases, the value @&can be altered such thgie) lies in a small interval around,(e).
The rest of the proof is divided in two cases.

The last step is fixed Let us divide the evenise E(s,) U {a} into three sets as follows

ee A if eisoriginally scheduled by a variable-delay event and irge}) # O;
ee B if eis originally scheduled by a variable-delay event and #rgef) = O;
ee C if eis originally scheduled by the ticking event.

Letay, ..., aq be the disctinct fractional values of the eveftis the valuation, or-
dered increasingly by the step in which the correspondieg®swvere originally sched-
uled. This definition is correct because two events with #raesfractional value must
be originally scheduled by the same event in the same stefhdfmore, leF, ..., Fq
be the corresponding sets of events, i.e. rg€()) = a for anye € Fi. We call a
configuratiorz ~ z, such that all events € (B U C) have the same value mandz, a
targetconfiguration and treat it aschdimensional vector describing the distinct values
for the setd-, ..., Fq. A 6-neighborhood of a target configuratiais the set of con-
figuration{z+ C | C € (-6, 6)"}. Observe that thé-neighborhood is @-dimensional
space. We sef to be the §/4)-neighborhood of, ( the reason for dividing by 4 is
technical and will become clear in the course of this prdof}.«4 denote the standard
Lebesgue measure on tdedimensional fiine space and se(Y) := xq(Y)/xq(Z) for
any any measurabMé C Z.

In order to prove the probability bound for any measurdbieZ, it suffices to prove
it for the generators i, i.e. ford-dimensional hypercubes centered around some state
in Z. Let us fix an arbitrarg € Z andy < 6/4. We setY to be they-neighborhood of.

In the rest of the proof we will show how to reach the ¥dtom the initial state $,, vo)
in n steps with high enough probability.

We show it by altering the originatwide patho = (S, vo) - - - (S, vn)- Letty, ..., t,
be the waiting times such that = v;j(a). In the first phase, we reach the fixed

instead of the configuratiom,. We find waiting timest}, ..., t, that induce a path
o’ = (%0,70) (S1,7}) ... (S, vy) with traceT such that &, v;) = zandt] = v/(a). In the
second phase, we define usimga set of paths t&. We allow for intervaldy, ..., I,

such that for any choicg € 11, .. .,t, € |, we get a patlor = (S0, vo) (S, v1) - .. (Sh, vn)
such that §,,v,) € Y andt; = v;j(a). From the size of the intervals for variable-delay
events and from the bound on densitiege get the overall bound on probabilities. Let
us start with the first step.

Letvy,..., vy bethe distinct values of the target configuratzoRecall thatv; — | <
6/4 for eachi. Letr(1),...,r(d) be the indices such that all eventsHnare originally
scheduled in the steydi). Notice that eaclk, ) is a singleton of a variable-delay event.
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Fig. 4. lllustration of paths leading to the s¥t The original pathr is in the first phase altered
to reach the target stardits valuesvy,v,, andv; are depicted betwean ando”’). In the second
phase, a set of paths that reaclis constructed by allowing imprecision in the waiting times
the transition times are randomly chosen inside the hataheak. Notice that at modtsmaller
intervals of sizey/2 can be used to get constant probability bound with respetiet size of the
d-dimensional hypercub¥. Transitions with fixed-delay are omitted from the illusima (except
for the last transition).

As illustrated in Figurél4, we set for eachcli < m

le —vi_1(€) if e € Ej is fixed-delay,
f =t + Siht—t)+a—v; ifi=r()forl<j=<d,
t + Dt — t) otherwise.

Intuitively, we adjust the variable-delays in the stepscping the original scheduling

of setsFy,...,Fq whereas the remaining variable-delay steps are kept in waythc

the original patho. The absolute time of any transitionari (i.e. the position of a line
depicting a configuration in Figuké 4) is not shifted by mdvans/4 sincev,—aj| < §/4

for anyi. Thus, the dierence of any two absolute times is not changed by more than
#/2. This diterence bounds theftierence ofvi(e) - v{(€)| for anyi ande € &. Hence,

o’ is (6/2)-wide because is §-wide. Furthermorer’ goes through the same regions as
o and performs the same sequence of events scheduling. Byibdi that, the desired
propertyz, = zis easy to show.

Next we allow imprecision in the waiting times of so that we get a set of paths
of measure linear ip®. In each step we compensate for the imprecision of the pusvio
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pensated for after the everiy)
Fig. 5. lllustration of construction of- for the empty se€ and the last step variable.

step. Formally, leT; denotet] + Z:Z:ll(t(( —ty). For each 1< i < mwe contraint

[Ti, Ti] if E;j are fixed-delay events,
fed(Ti-3 Ti+3) ifi=r(j)fori<j<d,
(Ti-2, Ti+$) otherwise.

The diference tas’ of any two absolute times is not changed by more thgh
because the imprecision of any step is bounded/dy Becauser’ is (6/2)-wide, any
patho goes through the same regionsces The diference of the value of events in
anyF; in the statez, from the statezis at mosty/2 because it is only influenced by the
imprecision of the step preceding its original schedulltgnce z, € .

By v we denote the number of variable-delay singletons anteng. ., E,. From
the definition ofP, it is easy to prove by that

P'(,Y) = phin-(c-9)-(c-6/2% > (pmin-c/2)" -y 6"

Sincekq(Y) = (2-y) andky(2) = (2-6/4)%, we havex(Y) = k4(Y)/kda(Z) = (4y/6)°.
We getP"(zo,Y) = «(Y)- (6 pmin- ¢/8)" and conclude the proof of this case by setting
&= (5" Pmin - ¢/8)".

The last step is variable The rest of the proof proceeds in a similar fashion as pre-
viously, we reuse the same notions and the same notationniyeexlefine the dfer-
ences: the neighbourhood and the way the paths are altered.

We call (s,v) ~ z, atargetconfiguration if there iy € R such that for all events
e € C we havev(e) — vy(e) = y and for all event® € B we havev(e) = vy(€). We
setg = d + 1 if C is non-empty, and = d, otherwise. We treat a target configuration
as ag-dimensional vector describing the distinct values forghtsF,, . .., Fq and the
valuey, if necessary. Again, a-neighborhood of a target configuratiaris the set of
configurationz+ C | C € (-6, 6)%}. We setZ to be the §/4)-neighborhood of, and set
k(Y) = «g(Y)/xg(Z) for any any measurable C Z. We fix Y to be ay-neighborhood of
a fixedz € Z.
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The patho’ is obtained from ther in the same way as before. We need to allow
imprecision in the waiting times ef’ so that we get a set of paths of measure linear in

y9.

— For the casg = d + 1 it is straightforward as we make the last step also with
imprecision+y/2. Precisely

[Ti, Ti if E;j are fixed-delay events,
te (Ti-% Ti+3) ifi=r(j)forl<j<dori=m,
(Ti- % Ti+$%) otherwise

whereE, are originally scheduled in the-th step ifE, are fixed-delay events, and
m equalsn, otherwise. The dierence of the value of events in aRyin the state

Z, from the statez is at mosty because it is influenced by the imprecision of the
step preceding its original scheduling and also by the igipi@n of the last step.
Events inC have the dierence of the value at mogf2 because of the last step.
Hencez, € Y. Again, we get thaP"(z, Y) > «(Y) - (6 - pmin - ¢/8)" and conclude
the proof by setting = (6 - pmin - ¢/8)".

— For the casg = d it is somewhat tricky since only at modtchoices of waiting
times can have their precision dependenyom each step we compensate for the
imprecision of the previous step. Only the imprecision & #tep preceding the
first schedulings; is not compensated for. Otherwise, it would influence theeal
of eventskE; in z,. Let T? denotet] + ZL;g(t’k — ). As illustrated in Figur&ls, we
contraint

[TLTH if E; are fixed-delay events,
e (U R if i < r(a),
@ oy T Ly ifi=r(j)for2< j<dori=m,
(TIWH _gI O 0y otherwise.

The diference ta’ of any two absolute times is not changed by more than@=
6/2 because the imprecision of any step is bounded /By Because’ is (6/2)-
wide, any patlo- goes through the same regions/dsThe diference of the value of
eventskE; in the statez, from the statezis at mosty/2 because it is only influenced
by the imprecision of the last step. Thetdrence of any other eveatis at most
2-vy/2 because itis influenced by the imprecision of the step pliagehe original
scheduling ok, as well. Hencez, € Y.

Now, we get thaP"(z,Y) > «(Y) - (6 - Pmin - ¢/12)" and conclude the proof by
settinge = (6 - Pmin - ¢/12)". |

Lemma 8. Let§ > 0 and R be a region such that the ticking event e is either not
scheduled or has the greatest value among all events saeduR. There is re N,

¢ > 0, a configuration Z, and a trace gE; - - - E;$, such that from any-separated

ze€ R, there is a’-wide path to zwith trace $E; - - - E,S, and total time t> M.
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Proof. We use a similar concept as in the proof of Lenirha 1. Let us ixsaparated
z € R Letabe the greatest value of all event scheduled @bserve, that no value is
in the interval &, a + §). When we build th&-wide path step by step, we use a variable
s denoting start of this interval of interest which flows withné. Before the first step,
we haves := a. After each step, which takesime, we set ;= frac(s + t).

In the interval B, s+ §] we make a grid of 3|&| + 1 points that we shift along with
s, and set’ = 6/(3- 8| + 1). On this grid, a procedure similar to theseparation takes
place. We build thé’-wide path by choosing sets of evelisto occur, waiting times
of the individual transitions, and target stateafter each transition so that

— every variable-delay event occurs exactly at an empty pdithte grid (i.e. at a time
when an empty point has value 0), and

— the built path is “feasible”, i.e. all the specified events cacur after the speci-
fied waiting time, and upon each occurrence of a specifiedtavermove to the
specified target state with positive probability,

These rules guarantee that the path we createvigde. Indeed, the initial configuration
is 6-separated fof > ¢, upon every new transition, tt#-neighborhood of 0 is empty,
and every variable-delay event occurs at a poifiedent form its current point, whence
it occurs at least’ prior to its upper bound. It is easy to see that such choices ar
possible since there are orflyevents, but 3|&| + 1 points.

Now we show that this procedure lasts only a fixed amount gfssbefore all the
scheduled events lie on the grid. Notice that if the tickingré is scheduled iR, it lies
at a point of the grid from the very beginning because we defiegrid adjacent to its
value. If it is not scheduled, it can get scheduled only by rgatéde-delay event which
occurs already at a point of the grid. Values of any other dolesl fixed-delay event
gets eventually placed at a point of a grid. Indeed, everj swent gets scheduled by
a variable-delay event next time, since we assume a siitlied GSMP. We now that
after timeM, all the non-ticking fixed-delay events are either not scifedior lie on
the grid. Each step takes at leastime. In total, aftem = [M/¢’] + 1 steps with trace
Ei, ..., En We can set* = z,.

It remains to show that from any oth&separated configuratiath € R, we can
build a¢’-wide path of lengtm, with traceE,, ..., E, that ends irg*. We start in the
same region. From the definition of the region relation andifthe fact that all events
occur in the empty intervab(a + §) we get the following. By appropriately adjusting
the waiting times so that the events occur at the same pditkearid as before, we
can follow the same trace and the same control states (duiaggh the same regions)
and build a patlz; . .. z, such thatz;, = z,. Indeed, all scheduled events have the same
value inz, as inz, because they lie on the same points of the grid. In fact, thiigsfor
z,_, andz,_; as well (because the firat- 1 steps take more thavl time units) except
for the value ofa. Finally, alsoa has the same value i) as inz, because there is no
need to alter the waiting time in the last step. By the sameraemts as before, the built
path is alsa@’-wide. O

Lemmal3. There is a measurable set of configuratiGrsuch that

1. there ik € N anda > 0 such that for every € I we havePX(z, C) > «, and
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2. thereist € N, 8 > 0, and a probability measukesuch that for every € C and
A e G we haveP!(z A) > - k(A).

Proof. We choose some reachable reg®such that the ticking evertis either not
scheduled irR or e has the greatest fractional part among all the schedulect®ve
There clearly is such a region. We fix afisciently smalls > 0 and choos€ to be the
set ofs-separated configurations it Now, we show how we fix this.

Itis a standard result from the theory of Markov chains, sge|25, Lemma 8.3.9],
that in every ergodic Markov chain thererissuch that between any two states there
is a path of length exactly. The same result holds for the aperiodic region gr@ph
From Lemmd1l, we reach im steps from any € I" a §’-separated configuratiah
with probability at least. FromZ, we have a path of lengthto the regionR. From
Lemmal2, we have > 0 such that we reacR from Z in n steps with probability at
leastp. Furthermore, we end up in & (3")-separated configuration of the regiBn
Hence, we sef = ¢’/3" and obtain the first part of the lemma.

The second part of the lemma is directly by connecting Leraf@atnd .

C Proof of Theorem[5

It only remains to prove the two Claims.

Claim. Let X be a set of all configurations in a BSCE; Xg C X the set of config-
urations with states,’andd the frequency corresponding # There are computable
constantsi;, n; € N andp, p2 > 0 such that for everiye N andzyx € X we have

|P(ReacliX)) — P'(zo, X)| < (1— py)t/m™
ld - P'(zx, Xg)l < (1- po)/m!

Proof. Let Y denote the union of regions from which the BS@Js reachable. By
Lemmatd Il anfl]2 we haye g > 0 andm € N andk < |V| such that from ang € Y
we reachX in m + k steps with probability at leagt- g. We get the first part by setting
n; = m+kandp; = p-q. Indeed, if the process staysYmaftern; steps, it has the same
chance to reacK again, if the process reach¥sit never leaves it, and if the process
reached™\ (XU Y), it has no chance to rea¢hany more.

By Corollary[1 in AppendiXB.BI is (n, &, )-small. By Theorem 8 of [24] we thus
obtain that for allx € I" and alli € N,

suplP'(x, A) - 7(A)] < (1L—g)/M
AeG

which yields the second part by settidg= {(s,v) € I' | s = & and observingl = 7(A)
andAe G O

Claim. On each regionyV is continuous, ané,[W] is finite.
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Proof. Let (s, v) be a configurationC andD the set of variable-delay and fixed-delay
events scheduled ig respectively. For nonemp® let T = mingep (¢4 — v(d)) be the
time the first fixed-delay event can occur; dr= () we setT = co. The probability that
the transition from¢, v) occurs within timet is

F(t) = 1-Tleec ﬁw fc\v(c)(X) dx forO<t<T,
1 fort>T

as non-occurrences of variable-delay events are mutuadlgpendent. Observe that
F(t) is piece-wise dterentiable on the interval (1), we denote byf (t) its piece-wise
derivative. The expected waiting time ig ¢) is

ot fOdt+T-(1-F(T) forT <o,

Jo t- f() dt for T = oo. ®)

W((s,v)) = {

Recall that for each variable-delay eventhe densityfe is continuous and bounded as
it is defined on a closed interval. Therefofg, are also continuous, henEeandf are
also continuous with respect toand with respect tbon (Q T). ThusW is continuous
for T both finite and infinite. Moreover, for finit€, W is bounded byl which is for
any (s, v) smaller than mags, £g. Hence E,[W] is finite. ForT = oo, E;[W] is finite
due to the assumption that eafzthas finite expected value. O
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