Skip to main content

Fixed-Delay Events in Generalized Semi-Markov Processes Revisited

  • Conference paper
CONCUR 2011 – Concurrency Theory (CONCUR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6901))

Included in the following conference series:

  • 905 Accesses

Abstract

We study long run average behavior of generalized semi-Markov processes with both fixed-delay events as well as variable-delay events. We show that allowing two fixed-delay events and one variable-delay event may cause an unstable behavior of a GSMP. In particular, we show that a frequency of a given state may not be defined for almost all runs (or more generally, an invariant measure may not exist). We use this observation to disprove several results from literature. Next we study GSMP with at most one fixed-delay event combined with an arbitrary number of variable-delay events. We prove that such a GSMP always possesses an invariant measure which means that the frequencies of states are always well defined and we provide algorithms for approximation of these frequencies. Additionally, we show that the positive results remain valid even if we allow an arbitrary number of reasonably restricted fixed-delay events.

The authors are supported by the Institute for Theoretical Computer Science, project No. 1M0545, the Czech Science Foundation, grant No. P202/10/1469 (T. Brázdil, V. Řehák) and No. 102/09/H042 (J. Krčál), and Brno PhD Talent Financial Aid (J. Křetínský).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Alfaro, L.: How to specify and verify the long-run average behavior of probabilistic systems. In: Proceedings of LICS 1998, pp. 454–465. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  2. Alur, R., Bernadsky, M.: Bounded model checking for GSMP models of stochastic real-time systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 19–33. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 115–136. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  4. Alur, R., Courcoubetis, C., Dill, D.: Verifying automata specifications of probabilistic real-time systems. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, Springer, Heidelberg (1992)

    Google Scholar 

  5. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Transaction on Software Engineering 29(6), 524–541 (2003)

    Google Scholar 

  7. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model checking of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 128–142. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Bernadsky, M., Alur, R.: Symbolic analysis for GSMP models with one stateful clock. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 90–103. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Brázdil, T., Krčál, J., Křetínský, J., Kučera, A., Řehák, V.: Measuring performance of continuous-time stochastic processes using timed automata. In: Proceedings of 14th International Conference on Hybrid Systems: Computation and Control (HSCC 2011), pp. 33–42, ACM Press, New York (2011)

    Google Scholar 

  10. Brázdil, T.: Krčál, J., Křetínský, J., Řehák, V.: Fixed-delay Events in Generalized Semi-Markov Processes Revisited. ArXiv e-prints (September 2011)

    Google Scholar 

  11. Ciardo, G., Jones III, R., Miner, A., Siminiceanu, R.: Logic and stochastic modeling with SMART. Performance Evaluation 63(6), 578–608 (2006)

    Article  Google Scholar 

  12. D’Argenio, P., Katoen, J.: A theory of stochastic systems Part I: Stochastic automata. Information and Computation 203(1), 1–38 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. German, R., Lindemann, C.: Analysis of stochastic Petri nets by the method of supplementary variables. Performance Evaluation 20(1-3), 317–335 (1994)

    Article  MathSciNet  Google Scholar 

  14. Glynn, P.: A GSMP formalism for discrete event systems. Proceedings of the IEEE 77, 14–23 (1989)

    Article  Google Scholar 

  15. Haas, P.: On simulation output analysis for generalized semi-markov processes. Commun. Statist. Stochastic Models 15, 53–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haas, P.: Stochastic Petri Nets: Modelling, Stability, Simulation. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg (2010)

    Google Scholar 

  17. Haas, P., Shedler, G.: Regenerative generalized semi-Markov processes. Stochastic Models 3(3), 409–438 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindemann, C., Reuys, A., Thummler, A.: The DSPNexpress 2.000 performance and dependability modeling environment. In: Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing, Digest of Papers, pp. 228–231. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  19. Lindemann, C., Shedler, G.: Numerical analysis of deterministic and stochastic Petri nets with concurrent deterministic transitions. Performance Evaluation 27, 565–582 (1996)

    Article  MATH  Google Scholar 

  20. López, G., Hermanns, H., Katoen, J.: Beyond memoryless distributions: Model checking semi-markov chains. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Marsan, M., Chiola, G.: On Petri nets with deterministic and exponentially distributed firing times. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 132–145. Springer, Heidelberg (1987)

    Google Scholar 

  22. Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. Wiley, Chichester (1995)

    Google Scholar 

  23. Matthes, K.: Zur Theorie der Bedienungsprozesse. In: Transactions of the Third Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, pp. 513–528 (1962)

    Google Scholar 

  24. Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  25. Roberts, G., Rosenthal, J.: General state space Markov chains and MCMC algorithms. Probability Surveys 1, 20–71 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Younes, H., Simmons, R.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 223–235. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brázdil, T., Krčál, J., Křetínský, J., Řehák, V. (2011). Fixed-Delay Events in Generalized Semi-Markov Processes Revisited. In: Katoen, JP., König, B. (eds) CONCUR 2011 – Concurrency Theory. CONCUR 2011. Lecture Notes in Computer Science, vol 6901. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23217-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23217-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23216-9

  • Online ISBN: 978-3-642-23217-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics