Skip to main content

CrunchBot: A Mobile Whiskered Robot Platform

  • Conference paper
Towards Autonomous Robotic Systems (TAROS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6856))

Included in the following conference series:

  • 2357 Accesses

Abstract

CrunchBot is a robot platform for developing models of tactile perception and navigation. We present the architecture of CrunchBot, and show why tactile navigation is difficult. We give novel real-time performance results from components of a tactile navigation system and a description of how they may be integrated at a systems level. Components include floor surface classification, radial distance estimation and navigation. We show how tactile-only navigation differs fundamentally from navigation tasks using vision or laser sensors, in that the assumptions about the data preclude standard algorithms (such as extended Kalman Filters) and require brute-force methods.

This work was supported by EU Framework project FP7-BIOTACT (ICT-215910).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Diamond, M.E., von Heimendahl, M., Knutsen, P.M., Kleinfeld, D., Ahissar, E.: ’where’ and ’what’ in the whisker sensorimotor system. Nat. Rev. Neurosci. 9(8), 601–612 (2008)

    Article  Google Scholar 

  2. Evans, M., Fox, C.W., Pearson, M.J., Prescott, T.J.: Spectral template based classification of robotic whisker sensor signals. In: Proc. TAROS (2009)

    Google Scholar 

  3. Evans, M., Fox, C.W., Pearson, M.J., Prescott, T.J.: Whisker-object contact speed affects radial distance estimation. In: Proc. IEEE ROBIO (2010)

    Google Scholar 

  4. Fend, M.: Whisker-based texture discrimination on a mobile robot. Advances in Artificial Life, 302–311 (2005)

    Google Scholar 

  5. Fox, C., Prescott, T.: Hippocampus as unitary coherent particle filter. In: Proc. Int. Joint Conference on Neural Networks, IJCNN (2010)

    Google Scholar 

  6. Fox, C., Prescott, T.J.: Mapping with sparse local sensors and strong hierarchical priors. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J. (eds.) TAROS 2011. LNCS (LNAI), vol. 6856, pp. 183–194. Springer, Heidelberg (2011)

    Google Scholar 

  7. Fox, C.W., Evans, M., Pearson, M.J., Prescott, T.J.: Towards temporal inference for shape recognition from whiskers. In: Proc. TAROS (2008)

    Google Scholar 

  8. Fox, C., Mitchinson, B., Pearson, M., Pipe, A., Prescott, T.: Contact type dependency of texture classification in a whiskered mobile robot. Autonomous Robots 26(4), 223–239 (2009)

    Article  Google Scholar 

  9. Gopal, V., Hartmann, M.J.Z.: Using hardware models to quantify sensory data acquisition across the rat vibrissal array. Bioinspir. Biomim. 2(4), S135–S145 (2007)

    Article  Google Scholar 

  10. Grant, R.A., Mitchinson, B., Fox, C.W., Prescott, T.J.: Active touch sensing in the rat. Journal of Neurophysiology 101, 862–874 (2009)

    Article  Google Scholar 

  11. Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M., Konig, P.: Texture signals in whisker vibrations. J. Neurophysiol. 95(3), 1792 (2006)

    Article  Google Scholar 

  12. Kim, D.E., Moller, R.: Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems 55(3), 229–243 (2007)

    Article  Google Scholar 

  13. Lepora, N., Evans, M., Fox, C., Diamond, M., Gurney, K., Prescott, T.: Naive Bayes texture classification applied to whisker data from a moving robot. In: Proc. IEEE World Congress on Comp. Int., WCCI 2010 (2010)

    Google Scholar 

  14. Melexis, www.melexis.com/assets/mlx90333_datasheet_5276.aspx

  15. Mitchinson, B., Martin, C.J., Grant, R.A., Prescott, T.J.: Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proc. Biol. Sci. 274(1613), 1035–1041 (2007)

    Article  Google Scholar 

  16. Prescott, T., Pearson, M., Mitchinson, B., Sullivan, J., Pipe, A.: Whisking with robots from rat vibrissae to biomimetic technology for active touch. IEEE Robotics and Automation Magazine 16(3), 42–50 (2009)

    Article  Google Scholar 

  17. Russell, R., Wijaya, J.: Object location and recognition using whisker sensors. In: Australasian Conference on Robotics and Automation. Citeseer (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fox, C.W., Evans, M.H., Lepora, N.F., Pearson, M., Ham, A., Prescott, T.J. (2011). CrunchBot: A Mobile Whiskered Robot Platform. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics