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CrunchBot: a mobile whiskered robot platform

Charles W. Fox, Mathew H. Evans, Nathan F. Lepora,
Martin Pearson, Andy Ham and Tony J. Prescott

Active Touch Laboratory at Sheffield (ATL@S)
University of Sheffield, UK

Abstract. CrunchBot is a robot platform for developing models of tac-
tile perception and navigation. We present the architecture of Crunch-
Bot, and show why tactile navigation is difficult. We give novel real-time
performance results from components of a tactile navigation system and
a description of how they may be integrated at a systems level. Compo-
nents include floor surface classification, radial distance estimation and
navigation. We show how tactile-only navigation differs fundamentally
from navigation tasks using vision or laser sensors, in that the assump-
tions about the data preclude standard algorithms (such as extended
Kalman Filters) and require brute-force methods.

1 Introduction

Touch-based navigation has two principal applications. Firstly, as a sole sensory
system in environments where other types of sensors fail, such as smoky or dusty
search-and-rescue sites, especially where covert (no signal emission) operation is
required. Secondly, as a complement to other sensors such as vision, with which
it can be fused or used as a ‘last resort’ during adverse conditions as in the sole
sensor case.

This paper presents a new robot platform, CrunchBot (Fig. 1(a)) which draws
together several strands of research towards systems for autonomous whisker-
based tactile navigation. We and other authors have previously investigated in-
dividual components of such a system in isolation, including whiskered texture
recognition [4],[11],[2], [5],[13], surface shape recognition [12],[9],[8],[3], and ob-
ject recognition [7]. These components are often tested under ideal laboratory
conditions or in individual mobile settings [16]. Here we present initial steps
towards integrating them into a single platform, along with new results and ob-
servations on their performance ‘in the wild’ in a common arena environment.
This integration report serves as a case study for other researchers wishing to
work with similar platforms, listing the particular technologies used, the tools
that link them together and providing new insights into the performance of such
integrated systems.

Fig. 2 gives an overview of our general framework for perception and navi-
gation with whiskers, which the present study works towards. When based on
biological whiskers, whisker sensors have strain sensors at their base only. When



= {EEEERRERECCLECEC et BRRREEREEE

()

Fig.1. (a) Crunchbot. (b) Overhead view of Crunchbot in the arena environment.
Different carpet tile textures can be seen on the floor along with square obstacles. (c)
Textured floor tiles used in the navigation task. From left to right; smooth carpet, vinyl
and rough carpet.
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Fig. 2. Framework overview for whisker-based perception and navigation

a rat investigates an object it palpates the surface in a behaviour known as whisk-
ing [15],[1],[10]. It is thought that whisking is important for gathering the most
reliable signals from whisker contacts. Whiskers can make two distinct types of
contact with an object, contacting either at the tip or the shaft. Tip contacts
are generally the most useful, because they provide a standardised, constrained
setting (i.e. with the contact point at a known location at precisely the end of
the whisker) from which surface properties such as orientation and texture can
be identified [12],[4]. In contrast, shaft contacts are less informative; for exam-



ple, the radial distance of an object can confuse attempts to classify surface
orientation and texture [5]. Shaft contacts are rare in practice, occurring only
when small objects enter the field of multi-whisker arrays between the whisker
tip points. In the scheme used here, a radial distance estimator [3] is first used
to make a decision of whether the contact is at the tip or the shaft. If it is a
shaft contact, then the robot should use the radial distance information to move
to another location that is likely to yield a more useful tip contact. Following
a tip contact, we can read surface angle and texture information (and possibly
speed of object when there are moving objects in the world) and pass them as
an observation to a navigation or mapping system.

The remainder of this paper outlines an initial implementation of each of
these stages, which for the first time are integrated into a complete system. The
present navigation method is driven by texture and distance observations only.
An intermediate object recognition step could also be performed, as described
in a companion paper [7].

2 Methods

2.1 Whiskers

CrunchBot’s six whiskers measure 160mm in length, 1.45mm diameter at the
base tapering linearly to 0.3mm at the tip. They are built from nanocure25 using
an Evisiontec rapid prototyping machine. A magnet is bonded to the base of the
whisker and held in place by a plug of polyurethane approximately 0.75 mm
above a Melexix 90333 tri-axis Hall effect sensor IC [14]. This sensor generates
two outputs representing the direction of the magnetic field (in two axes) with
respect to its calibrated resting angle. These two 16-bit values are sampled by a
local dsPIC33f802 micro-controller which, in turn, is collected using an FPGA
configured as a bridge to a USB 2.0 interface. Up to 28 whiskers can be connected
to this FPGA bridge at one time. Using the vendor provided software driver and
API (Cesys GmbH), a user can request the data from all whiskers at minimum
intervals of 500us (a maximum sample rate of 2kHz).

2.2 Robot platform

The whiskers are mounted in the cargo bay of an iRobot Create base (www.irobot.com),
being positioned on an adjustable metal bar and rapid prototyped ball joint
mountings. These mountings allow adjustment of the whiskers, which is par-
ticularly important for obtaining good floor contacts. We have also extended
the cargo bay mounting to accommodate a netbook PC, which is used for lo-
cal control of the robot. The netbook runs Ubuntu 10.10 on a single-core Intel
Atom processor. A circular buffer in shared memory is used to make data from
the Cesys driver available to other processes. The netbook hosts a Player server
(playerstage.sourceforge.net) which provides high-level, networked API interfac-
ing to the Create’s serial port commands. Processes such as texture and shape



recognition and basic motor control run on the netbook, reading the raw data
from the fast circular shared memory buffer, and (usually, see Section 2.3 below)
writing their results every 0.1s to a Python Pyro server (pyro.sourceforge.net)
on the remote desktop. Differential and absolute odometry data from the Create
is also sent to this server. Preliminary experiments in our lab show that the
odometry of the Create, once loaded with the sensing and control hardware, is
accurate to < 5% of any straight line or turn on the spot movements.

2.3 Navigation task

Fig. 1(b) shows the arena environment used in our tests. The arena is a 2.5mx2.5m
square, surrounded by walls and paved with twenty five 0.5mx0.5m tiles. There
are three types of tiles with different textures: vinyl, smooth carpet and rough
carpet (see Fig. 1(c)). A few 0.5mx0.5m square obstacles are also placed over
some carpet tiles. The current system implements a random exploratory be-
haviour of the arena, controlled by the netbook.

Previous work has shown that accurate object localisation with a whisker
requires some measure of contact speed [3], or of the applied forces and bending
moments at the base of the whisker [9],[12], values that are not always available
in the mobile case as agent movement will affect these contacat properties. To
address these points a ‘body whisk’ behaviour was included in the robot program.
As the whiskers were not actuated the whole robot must rotate in a systematic
way. Upon initial contact with an object the robot first reverses away a short
distance before rotating at m/24 radians per second towards the object, then
rotating at 7/24 radians per second away from the object. This allows this
whiskers to move over the surface of the contact object, collecting data about its
shape. After the whisk the robot reverses again to clear the object, then rotates
in a random direction and moves forward again.

The ultimate task is to infer the robot’s location from noisy odometry and the
whiskers. There is some subtlety in how odometry is reported. Inference running
on the remote desktop may become computationally intensive, and its update
cycle can fall behind the rate of reporting from the netbook. Markovian inference
algorithms can simply discard any unused sensory observations, requiring only
the latest observation, but the odometry must be integrated so that each inference
step receives the total odometry occurring since the previous inference step. Thus
multiple read outs may be required from the robot sensory systems, which were
taken at 0.ls intervals.

2.4 Floor texture discrimination

The outer two of the six whiskers are angled downwards to make a light, brush-
ing contact with the floor surface that CrunchBot is travelling over (Fig. 1).
Classification software on the netbook then seeks to classify the whisker deflec-
tion signals into previously learnt classes (for example, vinyl or rough carpet),
to infer which surface the robot is travelling over. In its current configuration,
the signals from the two outer whiskers are classified individually, so that the



robot can determine whether its left and right sides are on the same or different
textures.

A stationary naive Bayes algorithm is used to infer the surface texture from
the whisker contacts (see also Lepora et al (2011) in this conference volume).
This algorithm has been demonstrated to be a reliable classifier of surface texture
from whisker contacts on mobile robot platforms [13]. The classifier uses stored
texture log-likelihoods log P(z|T) that represent the log-probability distributions
of contact deflections in training data from each possible texture. The overall log
likelihood over a temporal window of whisker deflection data is then obtained by
integrating these the log-likelihoods over the individual samples, assuming naive
sample independence and stationarity over time,

nf
lng(xnsv' o 7xnf‘Tl) = Z 10gP(£z|Tl) (1)
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In previous studies of this classifier [13], these likelihoods were fed into Bayes
rule to give the posterior probabilities of the probabilities for each texture having
generated the window of data. Instead, the present method feeds the likelihoods
directly into the navigation system for the robot, to be used to infer navigation
information.

Another principal difference from our previous applications of stationary
naive Bayes, is that the present implementation requires that the classification
be done in real-time on board the robot. Moreover, the texture that the robot is
sensing can change during the motion, as the robot moves from one tile to the
next. For these reasons, only the most recent 100ms (200 sample) window of tex-
ture data was classified, to give good classification reliability while minimising
possible boundary crossing. Fortunately, the algorithmic complexity of the classi-
fier is low, so that classification times were much less than the inter-classification
intervals of 100ms.

2.5 Object localisation

To determine whether an object has made contact with the a whisker at the tip
or the shaft, and to discriminate between contacts with the surfaces or corners
of objects, object localisation was implemented. Previous work [3] has shown
that peak deflection magnitude could be used as a feature for radial distance
discrimination at a given speed. Whisker data was recorded during the ‘body
whisk’ contact, and the maximum whisker deflection was measured. Deflection
magnitude was taken as the Hall effect sensor output voltage at peak deflection,
which is proportional to the bending moment. This feature f; can be defined as,

f1 = maxy0(t), (2)

where 6(t) is the time-dependent deflection magnitude measured by the Hall
effect sensor.

During the training phase a dataset was collected for each whisker, consisting
of 5 contacts at each point along the whisker at 10mm intervals over a 50mm



range from the tip of the whisker. Though the whisker is 160mm long, only
140mm is external to the ‘follicle’. A model was then generated of the relation-
ship between the deflection magnitude and the corresponding radial distance to
contact by fitting a linear equation to the training data in MATLAB. To find
an estimate of radial distance r,

r =aif1+ aop, (3)

was fitted to the data with a linear-in-the-parameters regression on the line,
giving a least-squares fit for (ag,a1) for each whisker.

2.6 Navigation

A key question to address in tactile navigation and mapping is to what extent
methods developed for other sensory modalities, such as laser scanners, are ap-
plicable to tactile sensors. A naive view of tactile navigation holds that touch
sensors are just like laser scanners but with a very short range, and therefore
standard approaches could be used.

Standard laser-driven methods include Extended Kalman Filtering (EKF)
and Iterative Closest Point matching. In ICP, large point clouds are aligned be-
tween steps to compute odometry estimates. In EKF, unique or rare features
are extracted from point clouds, and used as discrete landmarks. In both of
these methods, the pose likelihood function varies smoothly over poses, because
the lasers have a long range, and their values change gradually with pose. In
particular, the assumption of this smoothness allows the EKF to approximate
the likelihood function by a Gaussian, with parameters given by the local cur-
vature around its prior mean. It is unclear in the tactile case whether the prior
mean is closely related to the posterior mean, as the relationship depends on the
likelihood smoothness.

Foveal grid. When these assumptions are violated, brute force computation
is required, such as grid based or particle filtering methods. To examine what
approach best matches the data, we have implemented a simple hybrid grid and
Gaussian likelihood model. By inspecting the shape of the likelihood functions
in the grids we will see if smoothness and Gaussian assumptions are appropri-
ate. To enable inference to run in real-time, we restrict the grid to a ‘foveal’
region centred on the robot’s prior mode location, and oriented in egocentric
coordinates. We denote likelihoods as P(s|z,y, ) where (z,y, 6) each range over
11 discrete values in the grid, and s is the current sensory report. (The grid is
0.25m in diameter, with 6 from /4 to +7/4.)

Filtering. A slow method to filter the belief at each step, given sensory reports
s1.¢+ over time ¢ would be to work entirely in the grid representation,

P(Xt|s1:¢) = P(s¢|Xt) Z P(Xy_1]s1:4-1)T(X¢| X¢—1,0) (4)
Xi-1

where we write X; = (¢, 44, 0¢), and T is a transition function describing motion
probabilities as a function of observed odometry data o;, and the sums range



over all possible states of the grids. This method is slow because it performs
3-dimensional convolutions. We speed up filtering by approximating the poste-
rior and transitions with Gaussians, N (us, X%) and N(uo,, Yo, ), at each step as
follows. First we compute the grid values,

P(X¢|s1:4) = P(s¢| X¢) (N (pg—1, Ze—1) * N(No,t, Eo,t)) (5)

for each discrete X; (where (o0,t) = o¢ to reduce subscripts). Here the compu-
tation only ranges over the present 3D grid, rather than the convolution over
two such grids. The simpler convolution of Gaussians, %, is quickly computed
analytically. We then fit a Gaussian to the resulting set of posterior grid points,
{Xt}7 R

P(Xtls1:4) = N(pe = X, Xy = COU)@({Xt})) (6)

by picking the mode and computing the covariance about the mode with the
sum

covy, ({Xi}) =D (X — X)T(Xe — X0) (7)
X

This foveal filtering method is illustrated in Fig. 3. Here the agent has moved
from a to b and has detected an object with its right whisker. Its previous poste-
rior Gaussian, centred on point ¢, is used together with the Gaussian transition
T to produce a prior Gaussian about point d. This Gaussian is discretised and
fused with likelihoods at each grid point to give the posterior shown in the en-
largement e. We would then fit a Gaussian to this posterior grid. (This method
is similar to the EKF and Unscented Kalman Filters in using Gaussian posteri-
ors, but differs by using a brute-force likelihood. Recall that we wish to examine
these likelihoods to see how valid the approximations of EKF and UKF would
be.)

Fig. 3. Foveal grid based navigation.

Transition function. Exact transition functions for 2D mobile robots are ‘ba-
nana shaped’ under Gaussian uncertainty about the starting angle, because the
direction of travel is uncertain. We use a heuristic Gaussian approximation to
this shape, which preserves the mode and tries to approximately minimise the



KL divergence from the true distribution. It is also necessary to add a small ad-
ditional component to each posterior covariance to compensate for quantisation
error in the grid and the lack of computation about locations beyond the foveal
grid.

Likelihood function. In the likelihood function, s; = (T;=1.2,7i=1.4)¢ iS com-
prised of information from the two floor sweeping whiskers returning texture
classes T;—1.0 € {VINYL, CARPET,ROUGH} and the four object localisation
whiskers returning radial distances to contact, r;—1.4 ranging from lmm to
140mm at contact or null () for no contact. We assume these observations
are conditionally independent given location and that the radial distance errors
are Gaussian. We use the noise levels found from empirical data. We speed up
the likelihoods by computing them offline for each grid square in the whole arena
and saving them in a hash table. (This requires coordinates in the egocentric grid
to be transformed to world-centred coordinates to perform the look-up).

3 Results

3.1 Floor texture discrimination

Real time classification of surface texture
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Fig. 4. Real-time classification of surface texture.

The top panel shows the classification results for the left (blue) and right (green)
whiskers traversing a course over rough carpet (shaded regions), then vinyl (unshaded
region) and back to rough carpet. The bottom panel shows the deflections associated
with each whisker.

The robot’s performance at real-time texture classification was assessed by
having the robot follow a course in the arena where it traverses different tex-
tures. For an initial investigation, only two surface textures were considered,
corresponding to a smooth vinyl and rough carpet. The classification algorithms



were trained by presenting the robot with just a single texture, from which
its central controller determined the corresponding texture likelihoods for that
surface. These were then stored for use in general classification.

A typical example of the classification performance is shown in Fig. 4. The
course consisted of a tile of rough carpet, then a tile of smooth vinyl, and finally
a tile of rough carpet. The approximate times when the robot was traversing
each texture are marked on the figure, with rough carpet shaded and smooth
vinyl unshaded. As is visible from the figure, both whiskers reliably reported the
correct texture.

One general feature that we observed is that the texture classifier can pro-
duce sporadic results near texture boundaries, with the whiskers disagreeing
about which texture is being encountered (Fig. 4 top panel, borders of shaded
regions). Examining the whisker deflection traces, reveals that large deflections
of the whisker can occur in these regions that last over a second. We diagnosed
this issue as due to the whisker catching on the boundary between two tiles
of different heights, and so this feature is actually a signature of a change in
texture. In general, catching the whisker on the floor surface caused problems
for the classification, because these are infrequent events that can last several
hundred milliseconds or more. Hence, we sought to position the whisker to an-
gle as far back as possible to minimise such events, which emphasises that the
way in which the whisker contacts the floor can be important for how reliable a
classifier can perform.

3.2 Object localisation

Peak deflection magnitude for each contact is shown in Fig. 5. Standard deviation
of error for radial distance estimation is shown in the table below.

T T
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Fig. 5. Peak deflection magnitude for contacts along the shaft of the whisker. Standard
error for the regression is 4.98mm

Whisker 1|Whisker 2|Whisker 3|Whisker 4||Combined
Std error| 5.68mm | 2.78mm | 1.82mm | 4.37mm 4.98mm




Standard classification error is very low, typically less than 5mm over the
60mm range tested. For some whiskers classification error is even lower, below
2mm. These results compare favourably with previous work under highly con-
trolled conditions where speed was variable. This indicates that the noise in the
odometry is low enough to ensure a consistent contact force and speed.

3.3 Navigation

Likelihood function forms. Fig. 6(a) shows typical examples of forms of the like-
lihood function, from six poses in the arena. (Dimension stacking is used to
display each 3D likelihood cube as a row of 2D slices.) It can be seen that these
functions are highly non-Gaussian and non-smooth, consisting mostly of multiple
straight edges and corners arising from the form of the floor and object layouts
in the arena. They include many abrupt discontinuities, because the whiskers
only sense a small local area, and neighbouring locations can have completely
different textures or object contacts. This is unlike the case of vision or lasers
whose likelihoods are locally smooth, and suggests that brute force methods such
as the foveal grid (or particle filters) are more appropriate to tactile navigation
than methods which assume that the likelihood is Gaussian or otherwise smooth.

Posterior fusion. Fig. 6(b) shows two typical examples of fusing priors (which
are always Gaussian) and likelihood grids, when the prior mode is a short dis-
tance away from the ground truth, but still within the fovea radius. In the first
example, the likelihood function is extremely focused — because only two points
are compatible with the sensors — so it dominates the posterior to correct the
belief. The second example shows a multi-peaked likelihood function knocking
out the region around the prior mode, and producing a multi-peaked posterior.
These two typical examples show that using the posterior mode as the next prior
mean is an appropriate method, rather than using the posterior mean, or lin-
earising the posterior about the old prior mean as in the EKF. They illustrate
the advantage of fitting the Gaussian to the posterior grid, rather than Gaus-
sianising the likelihood only and fusing it analytically with the prior Gaussian
(which we attempted in earlier implementations with little success.)

Odometry. In simulations with low sensor noise, we found that computing
the ‘banana’ approximation to odometry noise under uncertain pose angle noise
models was unnecessary in practice, because the use of the foveal grid restricts
the posterior Gaussian to the size of the fovea. As long as the likelihood functions
are strong enough to move the mode around when fused with the prior, we
found little difference in behaviour between using the full approximation and
simply inflating every posterior covariance to equal the size of the fovea. The
covariance cannot increase beyond this size because locations outside the fovea
are never considered; while the full covariance could reduce in size on informative
observations, such observations are rare in our tactile task, and also have little
effect on the mode positions.

Full system integration. Fig. 6(c) shows a very early screenshot from the first
test we have performed with the full system. It is the simplest possible test,
moving over a single texture boundary and correcting the posterior belief.



4 Discussion

We have demonstrated an initial implementation of our framework for whiskered
perception and navigation, showing how real-time signal processing, texture clas-
sification, distance estimation and navigation can be combined on an inexpensive
mobile platform.

It is important to consider interactions between components when integrat-
ing systems. For example, we found it useful to disable both odometry reports
and texture classification while performing mini-whisks. As noted in previous
studies, contact location confounds surface property discrimination [5] and we
are currently working to implement active sensing behaviours which position
the robot so as to obtain standardised contact types to aid perception. Placing
action at the heart of the perceptual process in this way is only possible with in-
tegrated mobile systems, rather than the statically mounted whiskers that have
been used in previous single component laboratory tests [9],[17].

Although introduced purely for computational reasons, both the use of like-
lihood hash table and the mode-centred Gaussian posterior approximations are
similar to, and loosely inspired by, biological models of hippocampal navigation
[6]. However use of a single mode-centered Gaussian has lead to problems in
pilot runs in which the true posterior becomes strongly multimodal, for example
when a focussed likelihood appears far away from the prior mode. Future sys-
tems may address this using small particle filters — even just two particles would
help. A larger scale solution to navigation is to perform an object recognition
step using sensory information, then use the objects as landmarks — such an
object recognition system is described in a companion paper [7].
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Fig. 6. (a) Example of likelihoods (lighter=stronger) at six locations during an explo-
ration. The white triangles on the map (left) show the fovea locations. At each step we
show the likelihood function (right) as a row of 11 x 11 foveal location squares, over a
third dimension (along the row) of orientation from —7/4 to 4+ /4. The black squares
in the arena are solid objects; white, light and dark grey are VINYL, SMOOTH and
ROUGH floor surfaces respectively. The square around pose (1) on the map shows the
location and size of the fovea. Foveas are not shown at other locations for simplic-
ity.(b) Two examples of non-smooth likelihoods fusing with Gaussian priors to give
non-smooth posteriors. The location of the posterior mode can be highly dependent
on the likelihood function, and approximating the likelihood with a Gaussian would
change its location. (¢) An early test of pose correction in the fully integrated system.
(Screenshot from graphical display). The triangles show a sequence of five ground truth
locations of the robot moving in a straight line, crossing the boundary from a vinyl tile
to a rough tile. The circles show the covariance of the posterior beliefs for the same five
steps. The belief is initialised to an incorrect location, 0.2m behing the ground truth.
The output shows the beliefs jumping to be closer to the ground truths as the robot
crosses the texture boundary.



