Abstract
The paradigm case for robotic mapping assumes large quantities of sensory information which allow the use of relatively weak priors. In contrast, the present study considers the mapping problem in environments where only sparse, local sensory information is available. To compensate for these weak likelihoods, we make use of strong hierarchical object priors. Hierarchical models were popular in classical blackboard systems but are here applied in a Bayesian setting and novelly deployed as a mapping algorithm. We give proof of concept results, intended to demonstrate the algorithm’s applicability as a part of a tactile SLAM module for the whiskered SCRATCHbot mobile robot platform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley, Chichester (1988)
Ahl, A.: The role of vibrissae in behavior: a status review. Veterinary Research Communications 10(1), 245–268 (1986)
Binford, T., Levitt, T.: Evidential reasoning for object recognition. IEEE Tranactions on Pattern Analysis and Machine Intelligence (2003)
Carvell, G., Simons, D.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10(8), 2638 (1990)
Erman, L., Hayes-Roth, F., Lesser, V., Reddy, R.: The Hearsay-II system. ACM Computing Surveys 12(2) (1980)
Evans, M., Fox, C., Pearson, M., Prescott, T.: Spectral Template Based Classification of Robotic Whisker Sensor Signals. In: Proc. TAROS 2009 (2009)
Evans, M., Fox, C., Prescott, T.: Tactile discrimination using template classifiers. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 178–187. Springer, Heidelberg (2010)
Fend, M.: Whisker-based texture discrimination on a mobile robot. Advances in Artificial Life, 302–311 (2005)
Fox, C., Pearson, M., Mitchinson, B., Pipe, T., Prescott, T.: Simple features for texture classification. Somatosensory and Motor Research 24(3), 139–162 (2007)
Fox, C.: ThomCat: A Bayesian blackboard model of hierarchical temporal perception. In: Proc. FLAIRS (2008)
Gallagher, G., Srinivasa, S.S., Bagnell, J.A., Ferguson., D.: Gatmo: A generalized approach to tracking movable objects. In: ICRA (2009)
Green, P.: Reversible jump Markov chain Monte Carlo computation. Biometrika 82(4), 711–732 (1995)
Heiligenberg, W.: Neural nets in electric fish. MIT, Cambridge (1991)
Kaneko, M., Kanayama, N., Tsuji, T.: Active antenna for contact sensing. IEEE Transactions on Robotics and Automation 14(2), 278–291 (1998)
Kim, D., Moller, R.: Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems 55(3), 229–243 (2007)
Laskey, K.B., da Costa, P.C.: Of starships and klingons: Bayesian inference for the 23rd century. In: Proc. UAI (2005)
Lepora, N., Evans, M., Fox, C., Diamond, M., Gurney, K., Prescott, T.: Naive Bayes texture classification applied to whisker data from a moving robot. In: Proc. IEEE WCCI (2010)
Milch, B.: Probabilisitic Models with Unknown Objects. Ph.D. thesis, UC Berkeley (2006)
Mitchell, M.: Analogy-Making as Perception. MIT, Cambridge (1993)
Pearl, J.: Causality. Cambridge University Press, Cambridge (2000)
Pearson, M.J., Mitchinson, B., Welsby, J., Pipe, A.G., Prescott, T.J.: Scratchbot: Active tactile sensing in a whiskered mobile robot. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (eds.) SAB 2010. LNCS, vol. 6226, pp. 93–103. Springer, Heidelberg (2010)
Petrovskaya, A., Khatib, O., Thrun, S., Ng, A.Y.: Touch based perception for object manipulation. In: ICRA (2007)
Schultz, A., Solomon, J., Peshkin, M., Hartmann, M.: Multifunctional whisker arrays for distance detection, terrain mapping, and object feature extraction. In: Proc. ICRA 2005 (2005)
Seth, A., McKinstry, J., Edelman, G., Krichmar, J.: Texture discrimination by an autonomous mobile brain-based device with whiskers. In: Proc. IEEE ICRA (2004)
Srinivasa, S., Ferguson, D., Helfrich, C., Berenson, D., Romea, A.C., Diankov, R., Gallagher, G., Hollinger, G., Kuffner, J., Vandeweghe, J.M.: Herb: a home exploring robotic butler. Autonomous Robots 28(1), 5–20 (2010)
Sutton, C., Burns, B., Morrison, C., Cohen, P.R.: Guided incremental construction of belief networks. In: Proc. Fifth Int. Symp. Intelligient Data Analysis (2003)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT, Cambridge (2006)
Wang, C.-C., Thorpe, C., Thrun, S., Herbert, M., Durrant-Whyte, H.: Simultaneous localization, mapping and moving object tracking. Int. J. Robotics Research 26, 889 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fox, C.W., Prescott, T.J. (2011). Mapping with Sparse Local Sensors and Strong Hierarchical Priors. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-23232-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23231-2
Online ISBN: 978-3-642-23232-9
eBook Packages: Computer ScienceComputer Science (R0)