Skip to main content

Sensing with Artificial Tactile Sensors: An Investigation of Spatio-temporal Inference

  • Conference paper
Towards Autonomous Robotic Systems (TAROS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6856))

Included in the following conference series:

Abstract

The ease and efficiency with which biological systems deal with several real world problems, that have been persistently challenging to implement in artificial systems, is a key motivation in biomimetic robotics. In interacting with its environment, the first challenge any agent faces is to extract meaningful patterns in the inputs from its sensors. This problem of pattern recognition has been characterized as an inference problem in cortical computation. The work presented here implements the hierarchical temporal memory (HTM) model of cortical computation using inputs from an array of artificial tactile sensors to recognize simple Braille patterns. Although the current work has been implemented using a small array of robot whiskers, the architecture can be extended to larger arrays of sensors of any arbitrary modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biotact consortium, http://www.biotact.org

  2. Numenta customers, http://www.numenta.com/about-numenta/customers.php

  3. Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 5(6) (2005)

    Google Scholar 

  4. Brecht, M., Preilowski, B., Merzenich, M.: Functional architecture of the mystacial vibrissae. Behavioural Brain Research 84(1-2), 81–97 (1997)

    Article  Google Scholar 

  5. Doya, K.: Bayesian brain: Probabilistic approaches to neural coding. The MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  6. Evans, M., Fox, C.W., Pearson, M.J., Lepora, N.F., Prescott, T.J.: Whisker-object contact speedaects radial distance estimation. In: IEEE International Conference on Robotics and Biomimetics (2010)

    Google Scholar 

  7. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1), 1 (1991)

    Article  Google Scholar 

  8. Földiák, P.: Learning invariance from transformation sequences. Neural Computation 3(2), 194–200 (1991)

    Article  Google Scholar 

  9. Frisby, J., Stone, J.: Seeing: the computational approach to biological vision. The MIT Press, Cambridge (2009)

    Google Scholar 

  10. George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5(10), e1000532 (2009)

    Article  MathSciNet  Google Scholar 

  11. George, D.: How to make computers that work like the brain. In: Proceedings of the 46th Annual Design Automation Conference, DAC 2009, pp. 420–423. ACM, New York (2009)

    Chapter  Google Scholar 

  12. Hartung, J., McCormack, J., Jacobus, F.: Support for the use of hierarchical temporal memory systems in automated design evaluation: A first experiment. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, CA, USA (2009)

    Google Scholar 

  13. Hinton, G.: Connectionist learning procedures. Artificial Intelligence 40(1-3), 185–234 (1989)

    Article  Google Scholar 

  14. Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology 160(1), 106 (1962)

    Article  Google Scholar 

  15. Knill, D., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences 27(12), 712–719 (2004)

    Article  Google Scholar 

  16. Mountcastle, V.: An organizing principle for cerebral function: The unit model and the distributed system. In: Edelman, G., Mountcastle, V. (eds.) The Mindful Brain. MIT Press, Cambridge (1978)

    Google Scholar 

  17. Numenta: Hierarchical temporal memory: Comparison with existing models. Tech. rep., Numenta (2007)

    Google Scholar 

  18. Numenta: Problems that fit htm. Tech. rep., Numenta (2007)

    Google Scholar 

  19. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  20. Rozado, D., Rodriguez, F., Varona, P.: Optimizing hierarchical temporal memory for multivariable time series. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6353, pp. 506–518. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Thornton, J., Gustafsson, T., Blumenstein, M., Hine, T.: Robust character recognition using a hierarchical Bayesian network. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1259–1264. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Motiwala, A., Fox, C.W., Lepora, N.F., Prescott, T.J. (2011). Sensing with Artificial Tactile Sensors: An Investigation of Spatio-temporal Inference. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics