Abstract
The ease and efficiency with which biological systems deal with several real world problems, that have been persistently challenging to implement in artificial systems, is a key motivation in biomimetic robotics. In interacting with its environment, the first challenge any agent faces is to extract meaningful patterns in the inputs from its sensors. This problem of pattern recognition has been characterized as an inference problem in cortical computation. The work presented here implements the hierarchical temporal memory (HTM) model of cortical computation using inputs from an array of artificial tactile sensors to recognize simple Braille patterns. Although the current work has been implemented using a small array of robot whiskers, the architecture can be extended to larger arrays of sensors of any arbitrary modality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biotact consortium, http://www.biotact.org
Numenta customers, http://www.numenta.com/about-numenta/customers.php
Berkes, P., Wiskott, L.: Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision 5(6) (2005)
Brecht, M., Preilowski, B., Merzenich, M.: Functional architecture of the mystacial vibrissae. Behavioural Brain Research 84(1-2), 81–97 (1997)
Doya, K.: Bayesian brain: Probabilistic approaches to neural coding. The MIT Press, Cambridge (2007)
Evans, M., Fox, C.W., Pearson, M.J., Lepora, N.F., Prescott, T.J.: Whisker-object contact speedaects radial distance estimation. In: IEEE International Conference on Robotics and Biomimetics (2010)
Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1), 1 (1991)
Földiák, P.: Learning invariance from transformation sequences. Neural Computation 3(2), 194–200 (1991)
Frisby, J., Stone, J.: Seeing: the computational approach to biological vision. The MIT Press, Cambridge (2009)
George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5(10), e1000532 (2009)
George, D.: How to make computers that work like the brain. In: Proceedings of the 46th Annual Design Automation Conference, DAC 2009, pp. 420–423. ACM, New York (2009)
Hartung, J., McCormack, J., Jacobus, F.: Support for the use of hierarchical temporal memory systems in automated design evaluation: A first experiment. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, CA, USA (2009)
Hinton, G.: Connectionist learning procedures. Artificial Intelligence 40(1-3), 185–234 (1989)
Hubel, D., Wiesel, T.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology 160(1), 106 (1962)
Knill, D., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences 27(12), 712–719 (2004)
Mountcastle, V.: An organizing principle for cerebral function: The unit model and the distributed system. In: Edelman, G., Mountcastle, V. (eds.) The Mindful Brain. MIT Press, Cambridge (1978)
Numenta: Hierarchical temporal memory: Comparison with existing models. Tech. rep., Numenta (2007)
Numenta: Problems that fit htm. Tech. rep., Numenta (2007)
Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)
Rozado, D., Rodriguez, F., Varona, P.: Optimizing hierarchical temporal memory for multivariable time series. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6353, pp. 506–518. Springer, Heidelberg (2010)
Thornton, J., Gustafsson, T., Blumenstein, M., Hine, T.: Robust character recognition using a hierarchical Bayesian network. In: Sattar, A., Kang, B.-h. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1259–1264. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Motiwala, A., Fox, C.W., Lepora, N.F., Prescott, T.J. (2011). Sensing with Artificial Tactile Sensors: An Investigation of Spatio-temporal Inference. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-23232-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23231-2
Online ISBN: 978-3-642-23232-9
eBook Packages: Computer ScienceComputer Science (R0)