Skip to main content

Task Space Integral Sliding Mode Controller Implementation for 4DOF of a Humanoid BERT II Arm with Posture Control

  • Conference paper
Towards Autonomous Robotic Systems (TAROS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6856))

Included in the following conference series:

Abstract

This paper presents the implementation (real time and simulation) of an integral sliding mode controller (ISMC) for the four degrees of freedom (DOF) of the humanoid BERT II robot arm, in order to deal with the inaccuracies and unmodelled nonlinearities in the dynamic model of the robot arm. This is a task space controller, tracking Cartesian coordinates x and y. The controller has been implemented using shoulder flexion, shoulder abduction, humeral rotation and elbow flexion joints of the BERT II right arm. The main controller is the combination of a feedback linearization (FL) scheme and an ISMC. The redundant DOF are controlled by a bio-mechanically inspired posture controller, to generate human like motion pattern based on recent work. Good real-time tracking results demonstrates effectiveness of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Sapio, V., Khatib, O., Delp, S.: Simulating the task level control of human motion: a methodology and framework for implementation. The Visual Computer 21(5), 289–302 (2005)

    Article  Google Scholar 

  2. Eker, I., Akinal, S.: Sliding mode control with integral augmented sliding surface: design and experimental application to an electromechanical system. Electrical Engineering (Archiv fur Elektrotechnik) 90, 189–197 (2008)

    Article  Google Scholar 

  3. Herrmann, G., Spurgeon, S., Edwards, C.: On robust, multi-input sliding-mode based control with a state-dependent boundary layer. Journal of Optimization Theory and Applications 129, 89–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jalani, J., Herrmann, G., Melhuish, C.: Concept for robust compliance control of robot fingers. In: 11th Conference Towards Autonomous Robotic Systems, Plymouth, UK, pp. 97–102 (2010)

    Google Scholar 

  5. Jalani, J., Herrmann, G., Melhuish, C.: Robust trajectory following for underactuated robot fingers. In: UKACC International Conference on Control, Conventry, UK (September 2010)

    Google Scholar 

  6. Khan, S., Herrmann, G., Pipe, T., Melhuish, C.: Adaptive multi-dimensional compliance control of a humanoid robotic arm with anti-windup compensation. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2218–2223 (2010)

    Google Scholar 

  7. Khan, S.G., Herrmann, G., Pipe, T., Melhuish, C., Spiers, A.: Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control. International Journal of Social Robotics 2, 305–319 (2010)

    Article  Google Scholar 

  8. Khatib, O.: A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Jounrnal of Robotics and Automation RA3(1), 43–53 (1987)

    Article  Google Scholar 

  9. Makoto, Y., Gyu-Nam, K., Masahiko, T.: Integral sliding mode control with anti-windup compensation and its application to a power assist system. Journal of Vibration and Control (2009)

    Google Scholar 

  10. Nemec, B., Zlajpah, L.: Null space velocity control with dynamically consistent pseudo-inverse. Robotica 18(1), 513–518 (2000)

    Article  Google Scholar 

  11. Shi, J., Liu, H., Bajcinca, N.: Robust control of robotic manipulators based on integral sliding mode. International Journal of Control 81, 1537–1548 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Pearson Prentice Hall, Upper Saddle River (1991)

    MATH  Google Scholar 

  13. Spiers, A., Herrmann, G., Melhuish, C.: Implementing discomfort in operational space: Practical application of a human motion inspired robot controller. In: TAROS Conference: Towards Autonomous Robotic Systems (August 2009)

    Google Scholar 

  14. Spiers, A., Herrmann, G., Melhuish, C., Pipe, T., Lenz, A.: Robotic implementation of realistic reaching motion using a sliding mode/operational space controller. In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 230–238. Springer, Heidelberg (2009)

    Google Scholar 

  15. Spurgeon, S.K., Davies, R.: A nonlinear control strategy for robust sliding mode performance in the presence of unmatched uncertainty. International Journal of Control 57(5), 1107–1123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of the 35th IEEE Decision and Control, vol. 4, pp. 4591–4596 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khan, S.G., Jalani, J., Herrmann, G., Pipe, T., Melhuish, C. (2011). Task Space Integral Sliding Mode Controller Implementation for 4DOF of a Humanoid BERT II Arm with Posture Control. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics