Skip to main content

The Research of Multi-pose Face Detection Based on Skin Color and Adaboost

  • Conference paper
Applied Informatics and Communication (ICAIC 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 226))

Included in the following conference series:

  • 1619 Accesses

Abstract

According to the situation of the traditional Adaboost algorithm can’t effectively detect multi-pose, skin color segmentation and Adaboost used to detect face is presented in this paper. First, the general face region-Region of interesting (ROI) is detected with skin color segmentation to divide face and background, and then Adaboost detector is used to detect this region. The experiment result shows multi-pose face can be well detected by the algorithm combing color segmentation and Adaboost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, M.-H., Kriegman, D., Narendra, A.: Detecting faces in images: A survey. IEEE Tran. on Pattern Analysis and Machine Intelligence 4(1), 34–58 (2002)

    Article  Google Scholar 

  2. Shao, P., Yang, L.-m., Huang, H.-b., Zeng, Y.-r.: Rapid Face Detection with Multi-pose Knowledge ModeIs and Templates. Journal of Chinese Computer Systems 2(2), 346–350 (2007)

    Google Scholar 

  3. Liu, X.-k., Sun, X.-h., Zhou, Y.-x.: Multi- angle Face Detection Based on New Haar-like Feature. Computer Engineering 35(19), 195–197 (2009)

    Google Scholar 

  4. Li, S.Z., Zhang, Z.-q.: Floatboost learning and statistical face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)

    Article  Google Scholar 

  5. Bojic, N., Pang, K.K.: Adaptive skin segmentation for head and shoulder video sequences. In: Visual communications 8th Image Processing, vol. 4067, pp. 704–711. SPIE, San Jose (2000)

    Google Scholar 

  6. Hsu, R.-L., Mohamed, Jain, A.K.: Face detection in color images. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)

    Article  Google Scholar 

  7. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of Conf. on Computer Vision and Patten Recognition, Kauai, Hawaii, USA, pp. 511–518 (2001)

    Google Scholar 

  8. Comaniciu, D., Ramesh, V.: Robust Detection and Tracking of Human Faces with an ActiveCamem. In: IEEE Int. Workshop on Visual Surveil-lance, Dublin, Ireland, pp. 11–18 (2000)

    Google Scholar 

  9. Jones, M.J., Rehg, J.M.: Statistical Color Models with Application to Skin Detection. Technical Report Series, Cambridge Research Laboratory 46(1), 81–96 (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, R., Tan, GX., Ning, SH. (2011). The Research of Multi-pose Face Detection Based on Skin Color and Adaboost. In: Zhang, J. (eds) Applied Informatics and Communication. ICAIC 2011. Communications in Computer and Information Science, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23235-0_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23235-0_82

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23234-3

  • Online ISBN: 978-3-642-23235-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics