Skip to main content

A Query Performance Analysis for Result Diversification

  • Conference paper
Advances in Information Retrieval Theory (ICTIR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6931))

Included in the following conference series:

  • 886 Accesses

Abstract

Which queries stand to gain or loose from diversifying their results? Some queries are more difficult than others for diversification. Across a number of conceptually different diversification methods, performance on such queries tends to deteriorate after applying these diversification methods, even though their initial performance in terms of relevance or diversity tends to be good.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying Search Results. In: WSDM’09 (2009)

    Google Scholar 

  2. Blei, D., Ng, A., Jordan, M., Lafferty, J.: Latent Dirichlet Allocation. In: JMLR (2003)

    Google Scholar 

  3. Carbonell, J., Goldstein, J.: The Use of MMR, Diversity-based Reranking for Reordering Documents and Producing Summaries. In: SIGIR’98 (1998)

    Google Scholar 

  4. Clarke, C., Kolla, M., Cormack, G., Vechtomova, O., Ashkan, A., Büttcher, S., Mackinnon, I.: Novelty and Diversity in Information Retrieval Evaluation. In: SIGIR’08 (2008)

    Google Scholar 

  5. He, J., Meij, E., de Rijke, M.: Result Diversification Based on Query-specific Cluster Ranking. JASIST 62(3) (2011)

    Google Scholar 

  6. Metzler, D., Croft, W.B.: A Markov Random Field Model for Term Dependencies. In: SIGIR’05 (2005)

    Google Scholar 

  7. Santos, R., Macdonald, C., Ounis, I.: Selectively Diversifying Web Search Results. In: CIKM’10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, J., Bron, M., de Rijke, M. (2011). A Query Performance Analysis for Result Diversification. In: Amati, G., Crestani, F. (eds) Advances in Information Retrieval Theory. ICTIR 2011. Lecture Notes in Computer Science, vol 6931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23318-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23318-0_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23317-3

  • Online ISBN: 978-3-642-23318-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics