Abstract
The query-performance prediction task is estimating the effectiveness of a search performed in response to a query in lack of relevance judgments. Post-retrieval predictors analyze the result list of top-retrieved documents. While many of these previously proposed predictors are supposedly based on different principles, we show that they can actually be derived from a novel unified prediction framework that we propose. The framework is based on using a pseudo effective and/or ineffective ranking as reference comparisons to the ranking at hand, the quality of which we want to predict. Empirical exploration provides support to the underlying principles, and potential merits, of our framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdul-Jaleel, N., Allan, J., Croft, W.B., Diaz, F., Larkey, L., Li, X., Smucker, M.D., Wade, C.: UMASS at TREC 2004 — novelty and hard. In: Proceedings of TREC-13, pp. 715–725 (2004)
Aslam, J.A., Pavlu, V.: Query hardness estimation using jensen-shannon divergence among multiple scoring functions. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 198–209. Springer, Heidelberg (2007)
Bernstein, Y., Billerbeck, B., Garcia, S., Lester, N., Scholer, F., Zobel, J.: RMIT university at trec 2005: Terabyte and robust track. In: Proceedings of TREC-14 (2005)
Carmel, D., Yom-Tov, E.: Estimating the Query Difficulty for Information Retrieval. In: Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers, San Francisco (2010)
Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In: Proceedings of SIGIR, pp. 390–397 (2006)
Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of SIGIR, pp. 299–306 (2002)
Cronen-Townsend, S., Zhou, Y., Croft, W.B.: A language modeling framework for selective query expansion. Tech. Rep. IR-338, Center for Intelligent Information Retrieval, University of Massachusetts (2004)
Diaz, F.: Performance prediction using spatial autocorrelation. In: Proceedings of SIGIR, pp. 583–590 (2007)
Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Proceedings of TREC-2 (1994)
Hauff, C., Azzopardi, L., Hiemstra, D.: The combination and evaluation of query performance prediction methods. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 301–312. Springer, Heidelberg (2009)
He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246, pp. 43–54. Springer, Heidelberg (2004)
Lavrenko, V., Croft, W.B.: Relevance-based language models. In: Proceedings of SIGIR, pp. 120–127 (2001)
Robertson, S.E.: The probability ranking principle in IR. Journal of Documentation, 294–304 (1977)
Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice Hall, Englewood Cliffs (1971)
Shtok, A., Kurland, O., Carmel, D.: Predicting query performance by query-drift estimation. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 305–312. Springer, Heidelberg (2009)
Shtok, A., Kurland, O., Carmel, D.: Using statistical decision theory and relevance models for query-performance prediction. In: Proceedings of SIGIR, pp. 259–266 (2010)
Song, F., Croft, W.B.: A general language model for information retrieval (poster abstract). In: Proceedings of SIGIR, pp. 279–280 (1999)
Vinay, V., Cox, I.J., Milic-Frayling, N., Wood, K.R.: On ranking the effectiveness of searches. In: Proceedings of SIGIR, pp. 398–404 (2006)
Yom-Tov, E., Fine, S., Carmel, D., Darlow, A.: Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval. In: Proceedings of SIGIR, pp. 512–519 (2005)
Zhai, C., Lafferty, J.D.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of SIGIR, pp. 334–342 (2001)
Zhou, Y.: Retrieval Performance Prediction and Document Quality. PhD thesis, University of Massachusetts (September 2007)
Zhou, Y., Croft, W.B.: Ranking robustness: A novel framework to predict query performance. In: Proceedings of CIKM, pp. 567–574 (2006)
Zhou, Y., Croft, W.B.: Query performance prediction in web search environments. In: Proceedings of SIGIR, pp. 543–550 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kurland, O., Shtok, A., Carmel, D., Hummel, S. (2011). A Unified Framework for Post-Retrieval Query-Performance Prediction. In: Amati, G., Crestani, F. (eds) Advances in Information Retrieval Theory. ICTIR 2011. Lecture Notes in Computer Science, vol 6931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23318-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-23318-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23317-3
Online ISBN: 978-3-642-23318-0
eBook Packages: Computer ScienceComputer Science (R0)