Skip to main content

Improved Car-Following Model for Traffic Flow and Its Numerical Simulation on Highway with Gradients

  • Conference paper
Advances in Computer Science, Environment, Ecoinformatics, and Education (CSEE 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 215))

  • 1861 Accesses

Abstract

We investigated the effect of the slope upon traffic flow on a single lane highway with an uphill gradient and a downhill gradient. The model was improved by introducing the variable brake distance on different gradient. A simulation is carried out to examine the validity and reasonability of the improved model. The result of the simulation shows that the amplitude of the density waves decreases with the decrease of the slope of the gradient on highway. Moreover the density waves propagate backward. The results indicated that the new model was reasonable and valid in describing the motion of the vehicles on highway with some gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pipes, L.A.: An operational analysis of traffic dynamics. J. Appl. Phys. 24, 274–281 (1953)

    Article  MathSciNet  Google Scholar 

  2. Bando, M., Hasebe, K.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  3. Kerner, B.S., Konhauser, P.: Structure and parameters of clusters in traffic flow. Phys. Rev. E 48, 2335–2367 (1993)

    Article  Google Scholar 

  4. Sawada, S.: Nonlinear analysis of a differential-difference equation with next-nearest-neighbour interaction for traffic flow. J. Phys. A: Math. Gen. 34, 11253–11259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hasebe, K., Nakayama, A., Sugiyama, Y.: Dynamical model of a cooperative driving system for freeway traffic. Phys. Rev. E 68, 26102 (2003)

    Article  Google Scholar 

  6. Komatsu, T., Sasa, S.: Kink soliton characterizing traffic congestion. Phys. Rev. E 52, 5574–5582 (1995)

    Article  Google Scholar 

  7. Nagatani, T.: Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys. Rev. E 60, 6395–6401 (1999)

    Article  Google Scholar 

  8. Lighthill, M.J., Whitham, G.B.: On Kinematic Waves. I. Flood Movement in Long Rivers. In: Proc. Roy. Soc. A, vol. 229, pp. 281–316 (1995)

    Google Scholar 

  9. Richards, P.I.: Shock Waves on the Highway. Oper. Res. 4, 42–51 (1960)

    Article  MathSciNet  Google Scholar 

  10. Tang, T.Q., Huang, H.J., Xu, X.Y., Xue, Y.: Analysis of density wave in two-lane traffic. Chin. Phys. Letters 24, 1410–1413 (2007)

    Article  Google Scholar 

  11. Hasebe, K., Nakayama, A., Sugiyama, Y.: Dynamical model of a cooperative driving system for freeway traffic. Phys. Rev. E 68, 26–102 (2003)

    Article  Google Scholar 

  12. Hasebe, K., Nakayama, A., Sugiyama, Y.: Equivalence of linear response among extended optimal velocity models. Phys. Rev. E 69, 17103 (2004)

    Article  Google Scholar 

  13. Lenz, H., Wagner, C.K., Sollacher, R.: Multi-anticipative car-following model. Eur. Phys. J. B 7, 331–340 (1998)

    Article  Google Scholar 

  14. Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y.: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 70, 66134 (2004)

    Article  Google Scholar 

  15. Jiang, R., Wu, Q.S., Zhu, Z.J.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 17–101 (2001)

    Article  Google Scholar 

  16. Li, Z.P., Liu, Y.C.: Analysis of stability and density waves of traffic flow model in an ITS environment. Euro. Phys. J. B 53, 367–372 (2006)

    Article  MATH  Google Scholar 

  17. Zhu, W.X., Jia, L.: Stability and kink-antikink soliton solutions for total generalized optimal velocity model. International Journal of Modern Physics C 19, 1321–1334 (2008)

    Article  MATH  Google Scholar 

  18. Zhu, W.X., Jia, L.: Nonlinear analysis of a synthesized optimal velocity model for traffic flow. Communications in Theoretical Physics 50, 505–509 (2008)

    Article  Google Scholar 

  19. Zhu, W.X., Liu, Y.C.: Total generalized optimal velocity model and its numerical test. Journal of Shanghai Jiaotong University (English Edition) 13, 166–170 (2008)

    Article  MATH  Google Scholar 

  20. Yu, L., Li, T., Shi, Z.K.: Density Waves in a traffic flow model with a reaction time delay. Physica A 398, 2607–2616 (2010)

    Article  MathSciNet  Google Scholar 

  21. Komada, K., Masakura, S., Nagatani, T.: Effect of gravitational force upon traffic flow with gradients. Physica A 388, 2880–2894 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, WX., Jia, ZP. (2011). Improved Car-Following Model for Traffic Flow and Its Numerical Simulation on Highway with Gradients. In: Lin, S., Huang, X. (eds) Advances in Computer Science, Environment, Ecoinformatics, and Education. CSEE 2011. Communications in Computer and Information Science, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23324-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23324-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23323-4

  • Online ISBN: 978-3-642-23324-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics