Abstract
Isomap is a classical and efficient manifold learning algorithm, which aims at finding the intrinsic structure hidden in high dimensional data. One deficiency appeared in this algorithm is that it requires user to input a free parameter k, but by applying natural nearest neighbor instead of k-nn or ε-nn to the original Isomap (called 3N-Isomap), this problem can be easily solved. In this paper, we demonstrate another feature of 3N-Isomap that can be used to discover abnormality information within regular data set by combining the natural nearest neighborhood graph and the estimation of geodesic distance upon this graph. Experiment results based on same regular data sets show that 3N-Isomap has the ability to discover abnormal structure hidden in high-dimensional data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tenenbaum, J., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimension reduction. Science 290, 2319–2323 (2000)
Berstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds (2000), http://isomap.stanford.edu/BdSLT.pdf
de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlineat dimensionality reduction. In: Advances in Nerual Information Porcessing Systems, vol. 15, pp. 705–712. MIT Press, Cambridge (2003)
Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Saul, L., Roweis, S.: Think Globally, Fit Locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)
Zhang, T., Yang, J., Zhao, D., Ge, X.: Linear local tangent space alignment and application to face recognition. Neurocomputering 70, 1547–1553 (2007)
He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: Proceedings of the 10 IEEE International Conference on Computer Vision, Beijing, China, pp. 1208–1213 (October 2005)
Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems (NIPS 2002), vol. 15, pp. 857–864 (2002)
He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of Advances in Neural Information Processing Systems, pp. 153–160. MIT Press, Cambridge (2004)
Lin, T., Zha, H., Lee, S.U.: Riemannian manifold learning for nonlinear dimensionality reduction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 44–55. Springer, Heidelberg (2006)
Balasubramanian, M., Schwartz, E.L.: The Isomap algorithm and topological stability. Science 295, 7a (2002)
Tenenbaum, J., De Silva, V., Langford, J.C.: The isomap algorithm and topological stability–response. Science 295, 7a (2002)
Zou, X., Zhu, Q., Yang, R.: Natural nearest neighbor for Isomap algorithm without free-parameter. Advanced Materials Research 219-221, 994–998 (2011) doi:10.4028
Zou, X., Zhu, Q., Jin, Y.: An adaptive neigborhood graph for LLE algorithm without free parameter. International Journal of Computer Applications 16(2), 20–23 (2011), doi:10.5120/1984-2673
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zou, X., Zhu, Q. (2011). Abnormal Structure in Regular Data Revealed by Isomap with Natural Nearest Neighbor. In: Lin, S., Huang, X. (eds) Advances in Computer Science, Environment, Ecoinformatics, and Education. CSEE 2011. Communications in Computer and Information Science, vol 216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23345-6_97
Download citation
DOI: https://doi.org/10.1007/978-3-642-23345-6_97
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23344-9
Online ISBN: 978-3-642-23345-6
eBook Packages: Computer ScienceComputer Science (R0)