Skip to main content

Abnormal Structure in Regular Data Revealed by Isomap with Natural Nearest Neighbor

  • Conference paper
Advances in Computer Science, Environment, Ecoinformatics, and Education (CSEE 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 216))

  • 813 Accesses

Abstract

Isomap is a classical and efficient manifold learning algorithm, which aims at finding the intrinsic structure hidden in high dimensional data. One deficiency appeared in this algorithm is that it requires user to input a free parameter k, but by applying natural nearest neighbor instead of k-nn or ε-nn to the original Isomap (called 3N-Isomap), this problem can be easily solved. In this paper, we demonstrate another feature of 3N-Isomap that can be used to discover abnormality information within regular data set by combining the natural nearest neighborhood graph and the estimation of geodesic distance upon this graph. Experiment results based on same regular data sets show that 3N-Isomap has the ability to discover abnormal structure hidden in high-dimensional data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tenenbaum, J., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimension reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  2. Berstein, M., de Silva, V., Langford, J., Tenenbaum, J.: Graph approximations to geodesics on embedded manifolds (2000), http://isomap.stanford.edu/BdSLT.pdf

  3. de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlineat dimensionality reduction. In: Advances in Nerual Information Porcessing Systems, vol. 15, pp. 705–712. MIT Press, Cambridge (2003)

    Google Scholar 

  4. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  5. Saul, L., Roweis, S.: Think Globally, Fit Locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  7. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26(1), 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, T., Yang, J., Zhao, D., Ge, X.: Linear local tangent space alignment and application to face recognition. Neurocomputering 70, 1547–1553 (2007)

    Article  Google Scholar 

  9. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: Proceedings of the 10 IEEE International Conference on Computer Vision, Beijing, China, pp. 1208–1213 (October 2005)

    Google Scholar 

  10. Hinton, G., Roweis, S.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems (NIPS 2002), vol. 15, pp. 857–864 (2002)

    Google Scholar 

  11. He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of Advances in Neural Information Processing Systems, pp. 153–160. MIT Press, Cambridge (2004)

    Google Scholar 

  12. Lin, T., Zha, H., Lee, S.U.: Riemannian manifold learning for nonlinear dimensionality reduction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 44–55. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Balasubramanian, M., Schwartz, E.L.: The Isomap algorithm and topological stability. Science 295, 7a (2002)

    Article  Google Scholar 

  14. Tenenbaum, J., De Silva, V., Langford, J.C.: The isomap algorithm and topological stability–response. Science 295, 7a (2002)

    Article  Google Scholar 

  15. Zou, X., Zhu, Q., Yang, R.: Natural nearest neighbor for Isomap algorithm without free-parameter. Advanced Materials Research 219-221, 994–998 (2011) doi:10.4028

    Article  Google Scholar 

  16. Zou, X., Zhu, Q., Jin, Y.: An adaptive neigborhood graph for LLE algorithm without free parameter. International Journal of Computer Applications 16(2), 20–23 (2011), doi:10.5120/1984-2673

    Article  Google Scholar 

  17. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zou, X., Zhu, Q. (2011). Abnormal Structure in Regular Data Revealed by Isomap with Natural Nearest Neighbor. In: Lin, S., Huang, X. (eds) Advances in Computer Science, Environment, Ecoinformatics, and Education. CSEE 2011. Communications in Computer and Information Science, vol 216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23345-6_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23345-6_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23344-9

  • Online ISBN: 978-3-642-23345-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics