
Object Placement for Cooperative Caches with
Bandwidth Constraints

UmaMaheswari C. Devi, Malolan Chetlur, and Shivkumar Kalyanaraman

IBM Research – India, Bangalore

Abstract. The projected growth in video traffic delivered to mobile devices is ex-
pected to stress the backhaul and core of a broadband wireless network. Caches
deployed at the edge elements, such as base stations, are one of alleviating this
stress. Limits on the sizes of the base station caches and restrictions on frequent
upgrades to the hardware necessitate that techniques that can increase the hit rates
with the growing traffic, given the constraints, be explored. In this paper, we con-
sider using cooperative caching schemes for the purpose. The edge elements are
connected via bandwidth-constrained links, and hence, the assumption made in
most prior work that the cooperating nodes are located on a high-speed network
do not apply here. We show that the problem of placing objects to maximize hit
rate in such a bandwidth-constrained caching system is NP-hard in the strong
sense. We develop an efficient placement algorithm when the caches have identi-
cal characteristics and show that its performance is within a constant factor of the
optimal under practical conditions. We also discuss how to extend the algorithm
for the non-identical case. Our simulation experiments show that in practice, the
performance of our algorithm is very close to the optimal and a few tens of co-
operating nodes are sufficient to significantly increase the hit rate even with a 1%
base cache size.

1 Introduction

Data and Video-on-Demand (VoD) traffic delivered over mobile networks are projected
to grow tremendously in the next few years [5]. Current wireless infrastructures are not
provisioned to handle this growth. The projected growth is hence expected to signifi-
cantly increase the stress on not just the wireless channel, but also the wired backhaul
and core of a cellular network. Wireless network operators are therefore seeking opti-
mizations that can ease this pressure and help defer infrastructure upgrades.

One simple and effective method to reduce the backhaul traffic is to cache frequently
requested content at the edge elements, such as base stations (BS) and central con-
trollers (CC). The limit on the size of a cache that can be placed at a BS is lower than
that of traditional Internet caches by an order of magnitude or more. While the smaller
caches might be capable of providing good hit rates to traditional web traffic, the same
may not hold for VoD and other types of multimedia traffic. This is due to the facts that
video objects are much larger in size and the number of video clips is increasing by the
day. The latter growth is spurred by the growth in user-generated content and IP and
mobile TV, which produce numerous shows per day. In such a scenario, adequate hit
rates may be obtained for the growing traffic by increasing the effective cache size by
enabling cooperation and sharing of objects among the caching nodes.

E. Jeannot, R. Namyst, and J. Roman (Eds.): Euro-Par 2011, LNCS 6852, Part I, pp. 579–593, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

580 U.C. Devi, M. Chetlur, and S. Kalyanaraman

Cooperative caching has been studied previously for traditional wired networks.
However, as discussed below, most of the prior work assumes that the caching nodes
are placed on a high-speed network, and hence, that bandwidth available for inter-cache
communication is not a constraint.1 Also, most of the work focuses on minimizing the
average object access latency. In contrast, the bandwidth available for inter-BS or inter-
CC communication in the wireless edge is limited, and our focus is on reducing the
network traffic in the backhaul and core by reducing the byte miss ratio in the edge.
Hence, we explore placing objects in a set of cooperating caches such that the hit rate
(not access latency) of the caches is optimized subject to not violating the inter-cache
communication bandwidth (ICCB) constraints.

Cellular BSs and CCs are organized in a two-level hierarchy with a few 100s of BSs
connected to a CC. We assume that any pair of BSs may communicate either directly
or via their parent CC. In either case, we assume that the bandwidth available for trans-
ferring objects among BSs is limited. In such a setup, we first consider the problem
of placing video objects at the BSs (assuming that there is no cache at the CC) and
specifying how those objects should be shared for the hit rate is maximized. We show
that this problem is NP-hard in the strong sense even when all the caches have identical
sizes and see identical object access patterns, an assumption made in several studies. We
then develop an efficient object placement algorithm for the case of identical caches and
show that it has a constant-factor approximation ratio under conditions expected to hold
in practice. Thirdly, we discuss how to extend the algorithm when second-level caches
are available at the CCs and relax the assumption that caches are identical. Finally, we
evaluate our scheme through simulations.

Our placement algorithm is centralized and the idea is to periodically determine the
placement map at a common node such as the parent CC using object popularity infor-
mation gathered from the BSs. The maps would then be distributed to the BSs, which
would subsequently cache the newly specified objects the first time each is requested.
To reduce object churn, knowledge of objects already cached at the various nodes may
be used while laying out a new map.

Related Work: Cooperative caching was (among other works) first explored as part
of the Harvest project [4]. A notable follow up was the Summary Cache [6], which
introduced efficient directory services. The above efforts were on the development of
techniques and protocols for directing URL requests that miss to sibling or parent nodes
and did not deal with bandwidth constraints.

The above work was followed by a good amount of research on object placement al-
gorithms for a cooperating cluster of web caches. Significant works in this area include
[11], which provides a 13.93-approximation algorithm for placing objects to minimize
the average access cost while imposing no constraints on the available bandwidth, and
[13], which extends the algorithm in [11] by including bandwidth constraints. [13] how-
ever assumes that the cache size at each node is very large and an object will be stored
locally after the initial miss. Hence, unlike our paper, the bandwidth constraints apply
only for the initial object placement and for periodic object updates, and not for serving
requests to objects from peer nodes on a continuous basis. Also, since video objects are

1 Works that impose a bandwidth constraint differ in the objective explored or in the exact nature
of the bandwidth constraint imposed.

Object Placement for Cooperative Caches with Bandwidth Constraints 581

immutable, the need for object updates is obviated, as is the initial object placement as
discussed earlier.

Replicating objects in a content-distribution network (CDN) to minimize the aver-
age number of ASs traversed [10], heuristics for minimizing the end-user retrieval cost
subject to meeting end-user QoS under the assumption of sufficient combined storage
for all the objects [14], and placing objects in a CDN layered on a P2P overlay [12]
have also been studied. P2P techniques are redundant for BS caches as BSs are reliable
entities.

The work that comes closest to ours is [2], which considers placing video objects in
a 2-level hierarchical network with costs on bandwidth usage on the links connecting
the nodes such that the total bandwidth cost is minimized and proposes distributed
algorithms with constant-factor approximation ratios. Bandwidth constraints cannot be
converted to bandwidth costs, and hence, the solution of [2] does not extend to the
problem in this paper, although there is similarity in the structure of our solution and
theirs.

Placing all of a large set of video objects in the video hub offices of a large-scale
distributed VoD system while minimizing the cost of total byte transfer subject to link
bandwidth limits is considered in [1]. The problem differs from ours since we also need
to determine which of the objects need to be placed. Another problem with a similar
flavor, that of distributing chunks of videos among end clients with local connectivity
to reduce the stress on the access networks is considered in [9].

The rest of the paper is organized as follows. Our system model is described in
Sec. 2. Sec. 3 develops a placement algorithm, derives an approximation ratio for it,
and discusses extensions to the algorithm. Simulation studies are described in Sec. 4.
Sec. 5 concludes.

2 System Model and Problem Formulation

We consider a cooperative caching proxy system of N nodes, 1, . . . , N , where node j
is provided with a cache of size Cj . Each request to each of a set of M video objects,
where the size of object i is Si bytes, pass through one of the N nodes. If a requested
object is cached at the node that receives the request, it is served from the node’s local
cache. The nodes are assumed to be provided with dedicated bandwidths, referred to
as inter-cache communication bandwidth, (ICCB), both in the upload and download
directions, that may be used for letting an object cached at a node to be borrowed by a
peer node. Hence, a request that misses at a node’s local cache can be served from either
a peer node or the origin server. The upload and download bandwidth limits at node j
are denoted Bu

j and Bd
j , respectively. The average demand in requests per second for

object i at node j is denoted Rij ; its bandwidth is hence Rij · Si bytes/sec. The total
bandwidth of objects borrowed by/from a node cannot exceed its ICCB limits. We are
concerned with placing a subset of M objects at the N nodes and designating how
objects are shared such that the total bytes served per second from the caches (byte hit
rate) is maximized. Note that since nodes have dedicated ICCB, an object served by
borrowing from a peer cache is considered a hit. We refer to the set of all caches at the
N nodes as the combined or collective cache.

582 U.C. Devi, M. Chetlur, and S. Kalyanaraman

O Place Gen

Maximize
M∑

i=1

N∑

j=1

(xij · Rij · Si +
N∑

k=1

xikj · Rij · Si)

subject to
M∑

i=1

Si · xij ≤ Cj , j = 1, . . . , N (1)

xik +
N∑

j=1

xijk ≤ 1, i = 1, . . . , M, k = 1, · · · , N (2)

xijk ≤ xij , i = 1, . . . , M, j, k = 1, . . . , N (3)
M∑

i=1

N∑

j=1

xijk · Rik · Si ≤ Bu
k , k = 1, . . . , M (4)

M∑

i=1

N∑

k=1

xijk · Rik · Si ≤ Bd
j , j = 1, . . . , M (5)

xij ∈ {0, 1}, xijk ∈ {0, 1}, i = 1, . . . , M,

j, k = 1, . . . , N (6)

Let xij be a 0-1 integer vari-
able denoting whether object i
is placed at cache j. Similarly,
let xijk denote whether object i
placed in cache j is borrowed by
cache k. The problem of placing
objects at the caches and deter-
mining how objects are shared to
maximize the byte hit rate, de-
noted O Place Gen, can then be
formulated as shown in the inset
to the right.

Object i served from node
j, either using a copy locally
cached at it or borrowed from
another node k, would lead to
Rij ·Si fewer bytes per second re-
quested from the hosting servers
and transported over the core and
backhaul networks. The objective function is therefore as indicated. The constraints in
(1) account for the limits on the cache sizes. Constraint (2) prevents a node from both
caching a node locally as well as borrowing from one or more caches, while (3) ensures
that node k borrows an object i from node j only if i is cached at j. (4) and (5) ensure
that the limits on uplink and downlink bandwidths available for inter-cache transport
are not violated at any node.

In O Place Gen, the objective function and all the constraints are linear in the deci-
sion variables, so it is an integer linear program. Solving it with generic integer program
methods can therefore require exponential time. It turns out that even a simpler special
case of the problem with uniform object and cache sizes, denoted S and C, respectively,
identical uplink and downlink bandwidth limits, denoted B, and identical popularity
distributions at all nodes, denoted Ri for object i (the bandwidth for object i would be
Ri · S bytes per sec at all nodes), is actually NP-hard in the strong sense, so an exact
solution to it or the general problem cannot be obtained in polynomial time using alter-
native methods either, unless P=NP. The special case, denoted O Place Spl, is obtained
from O Place Gen by replacing Rij ’s and Rik’s with Ri, Si’s with S, Cj with C, and
Bu

k and Bd
j with B. A complete problem statement is omitted due to space constraints.

3 Hardness Result and Approximation Algorithm

The special case of the object placement problem O Place Spl is NP-hard in the strong
sense as we show in the longer version of this paper. The reduction is from the 3-
PARTITION (3-PART) problem, which is NP-complete in the strong sense. Hence, a
pseudo-polynomial-time algorithm or an FPTAS are also not possible for O Place Spl,
apart from a polynomial-time algorithm.

Object Placement for Cooperative Caches with Bandwidth Constraints 583

3.1 Hardness Proof

3-PART is a number problem [7, pp. 224 and 94] defined as follows.

Definition 1 (3-PART): Given set E of 3m elements, e1, e2, . . . , e3m, a bound K ∈ Z+,
and a size s(ei) = si ∈ Z+ for each ei ∈ E such that K/4 < si < K/2 and∑3m

i=1 si = mK . The problem is to determine whether E can be partitioned into m
disjoint sets E1, E2, . . . , Em such that

∑
e∈Ei

s(e) = K , for 1 ≤ i ≤ m.

Theorem 1. O Place Spl is NP-hard in the strong sense.

Proof: To prove the theorem, we show that the decision version of O Place Spl is NP-
complete in the strong sense. It is easy to see that the decision version is in NP. We
provide a pseudo-polynomial reduction [7] from 3-PART to it.

Consider an arbitrary instance of 3-PART and construct an instance of O Place Spl,
denoted objpl-3-part, from it, as follows. Let N = m, M = 3m, C = 3 · S, S = 1, and
B = (m − 1) · K . Let Ri = si/S for 1 ≤ i ≤ N . Let Bi = Ri · S = si denote the
bandwidth of object i. We now show that a solution to 3-PART exists if and only if there
is a solution to objpl-3-part with objective value exactly equal to N · m · K = m2K .

⇐ Assume that there is a solution to objpl-3-part with objective value exactly m2K .
Because C = 3 · S, each node can store at most three objects locally in its cache.

We first show that this number is exactly three. If some node stores fewer than three
objects, then the total number of objects stored in the combined cache is less than 3m.
Thus, there exists at least one object that is not served by the combined cache, and
hence, the objective value of the solution to objpl-3-part cannot equal or exceed m2K ,
which contradicts our assumption. Thus, each node stores exactly three objects in its
cache. Next, we show that for each node, the total bandwidth of the three objects stored
in its cache is exactly K . For this, first note that for the objective value to equal m2K ,
each of the m nodes should serve all the 3m objects from the combined cache. The
total bandwidth of all the objects is mK . The total bandwidth of the objects that a node
borrows from other caches cannot exceed (m−1) ·K (since the downlink bandwidth at
each node (B) is limited to (m− 1) ·K). Hence, each node should serve the remaining
mK − (m − 1)K = K bytes from its local cache. Thus, the total bandwidth of the
three objects that each node caches is exactly K . Therefore, since Bi = si, a solution
to 3-PART can be obtained from a solution to objpl-3-part by assigning element ei to set
Ej if object i is assigned to node j (that is xij = 1).

⇒ A solution to objpl-3-part with objective value exactly m2K that satisfies cache
capacity constraints and bandwidth constraints can be obtained by simply setting xij =
1 if ei is assigned to set Ej , and xijk = 1 for all k �= j, if xij = 1.

The reduction can be performed in polynomial time. All numbers in objpl-3-part
are polynomially bounded by the numbers in 3-PART. Thus, the decision version of
O Place Spl is NP-complete in the strong sense. O Place Spl is hence NP-hard in the
strong sense. �

3.2 Efficient Placement Algorithm

In this section, we focus on designing an efficient centralized algorithm for solving
O Place Spl. We assume that at least a few of the top K most popular objects have

584 U.C. Devi, M. Chetlur, and S. Kalyanaraman

bandwidth at most B/(N − 1). (K = C/S, the number of objects that fit in a cache.)
Otherwise, the scope for cooperation would be very limited and one may consider en-
abling cooperation among fewer caches (i.e., with smaller N).

Identifying Heuristics. Before presenting an algorithm for O Place Spl, we present
some rules of thumb that have been used in its design. In what follows, we will refer
to an object that is cached at all N nodes as fully replicated. An object that is cached
at two or more nodes, but not all nodes, is said to be partially replicated, and one that
is cached at a single node as unreplicated. An unreplicated object that is shared by all
nodes is said to be totally shared, while an unreplicated or a partially-replicated object
that is shared by some but not all nodes or borrowed partly by all nodes is referred to
as partially shared. An object cached at a node is said to be partly borrowed by a peer
node if part of the requests to the object at the peer node that are evenly distributed is
served from the caching node.

Rule 1. Cache objects with the largest bandwidths (in fully-replicated, partially-
replicated, or unreplicated manner).

This rule is quite obvious and is used by most caching systems.

Rule 2. Since ICCB is constrained, replicate, either fully or paritially, objects of larger
bandwidths.

If ICCB is abundant, then bytes served from the collective cache can be maximized
by having unique copies of as many objects as possible in the constituent caches and
serving those objects from the combined cache at every node. In such a case, most
objects (if not all) are unreplicated and the rule does not apply.

If ICCB is limited, then it can be shown that fully replicating one or more objects
will serve to increase the combined hit rate. To see that replicating higher bandwidth
objects is beneficial, suppose a higher bandwidth object, H , is unreplicated or partially
replicated, while a lower bandwidth object, L, is fully replicated. Then, a node N that
does not cache H has two options: it either fetches H from the hosting server or borrows
it from a peer. It is easy to see that simply replacing L by H would in the former case
increase the number of bytes served locally from N (while not decreasing the number
of bytes borrowed from the other caches and served). In the latter case, the replacement
would lead to H being served locally. The downlink bandwidth that consequently gets
freed up at N can be used to borrow at least L, and potentially, a few more objects. So,
the total bytes that N serves from the combined cache is not lowered. Thus, replicating
larger bandwidth objects serves, in general, to increase the bytes served.

Rule 3. Among the objects chosen for caching, unreplicate and totally share those with
lower bandwidths, subject to not violating the ICCB constraints.

The rationale for this rule is similar to that for the prior one.

Object-Placement Algorithm. Let O denote the set of all M objects arranged in non-
increasing order of their bandwidths. We start with the set of objects with the highest
demand (that is, the largest bandwidth objects), referred to as OC, that will fit in a cache
of size C. (These will be the objects that each node caches in a non-cooperative setting.)
These would form the initial set of replicated objects, while the initial shared object set
is ∅.

Object Placement for Cooperative Caches with Bandwidth Constraints 585

1: b : array 1..M of real sorted descending {object
bandwidths}

2: shr from : integer {starting index of unreplicated and shared
objects in OC}

3: L : integer {no. of objects in OC that are unreplicated and
shared}

4: Btop : real {total bandwidth of unreplicated and shared objects in
OC}

5: Binc : real {total bandwidth of unreplicated and shared objects in
ŌC}

6: {Determine the objects with total bandwidth at most B/(N − 1) at
the tail of the objects in OC}

7: i := K; {K is the no. of objects that can be held in a cache}
8: Btop := 0;
9: while Btop + b[i] ≤ B/(N − 1) do

10: Btop := Btop + b[i];
11: i := i − 1;
12: end while
13: shr from := i + 1;
14: L := K − shr from + 1;
15: /* Select (N − 1) · L objects from ŌC*/
16: Binc :=

∑K+(N−1)·L
i=K+1 b[i]

17: Oshared := objects K − L + 1 . . . K + (N − 1) · L;
18: while NB/(N − 1) > Binc + Btop do

19:

/* Check if unreplicating and sharing the next lowest
bandwidth object from OC can increase the total band-
width of objects from ŌC brought into the combined
cache and shared */

20:
21: if b[shr from − 1] +

∑K+(N−1)(L+1)
i=K+(N−1)L+1 b[i] + Binc + Btop ≤

NB/(N − 1) then
22: shr from := shr from − 1; L := L + 1;
23: Btop := Btop + b[shr from];

24: Binc := Binc +
∑K+(N−1)(L+1)

i=K+(N−1)L+1
b[i];

25: Update Oshared to include the newly selected objects;
26: end if
27: end while

28:
/* Distribute the objects in Oshared using a balanced
fit heuristic such that the total bandwidth of all objects
assigned to any node is at most B/(N − 1) */

29: for each object with index O in Oshared do
30: /* consider objects in non-increasing order of their bandwidths */

31:

assign O to the node with the largest unused ICCB
among those with spare physical slots if such a node
exists and unused ICCB at the node is at least (N − 1) ·
b[O];

32: mark O as totally shared from the node caching it;
33: end for

34:
assign the remaining objects in Oshared to nodes with
available physical slots; mark them unshared

Fig. 1. Object Placement Algorithm PA

Let ŌC denote
the set of objects
in O excluding those
in OC. Since ICCB
B is constrained,
not all objects can
be unreplicated and
shared, and by Rule
2, high bandwidth
objects should be
replicated. Our goal
is to identify the
boundary at which
unreplication and
sharing should com-
mence.

Given that ICCB
is B, the amount
of data that each
node serves from
the combined cache
can be at most B
bytes per second
higher than the to-
tal bandwidth of
the objects in OC.
Let Oinc ⊆ ŌC de-
note the set of ob-
jects brought into
the combined cache
when cooperation
is enabled. By Rule
3, as many of these
objects should be
totally shared. If
all the objects in
Oinc could be to-
tally shared, then
the total bandwidth
of all the objects
in Oinc could be
at most B. Fur-
thermore, for ev-
ery N − 1 ob-
jects brought into

586 U.C. Devi, M. Chetlur, and S. Kalyanaraman

the combined cache, due to cache capacity constraints, at least one object from OC

should be unreplicated and shared (to make room for the incoming objects). Thus, if
� = |Oinc|, L = 	�/(N − 1)
 of the OC objects should be unreplicated and shared.

By the ICCB constraint B, at each node, the total bandwidth of all the objects that
are unreplicated and totally shared cannot exceed B/(N−1). Thus, the total bandwidth
of all the unreplicated and totally shared objects in the combined cache cannot exceed
NB/(N − 1). Our objective of maximizing the total bytes served from the combined
cache thus reduces to the following:

Phase 1. Choosing L objects from OC and � objects from ŌC for sharing such that the total
bandwidth of the objects from ŌC is maximized and the constraints below hold.

(C1) � ≤ (N − 1) · L
(C2) The total bandwidth of the L + � objects chosen is at most NB/(N − 1)

Phase 2. Partitioning the L + � chosen objects among the N nodes such that the total bandwidth
of the objects assigned to each node is at most B/(N − 1).

Listing for an algorithm, denoted PA, that accomplishes the above is provided in Fig. 1.
Choosing objects that should be unreplicated and totally shared is performed in the
first phase in lines 7–27. In this phase, L is initially set to the number of the lowest
bandwidth objects in OC with total bandwidth at most B/(N − 1) (lines 7–17). If the
combined bandwidth of the first (N − 1) · L objects from ŌC, Binc, and the L objects
from OC, Btop, is at least NB/(N − 1), then the algorithm moves to the second phase.
Since objects are arranged in non-increasing order of bandwidths, Binc ≤ (N−1)·Btop

holds at every step.
On the other hand, if the combined bandwidth is less than NB/(N − 1), then the

while loop in line 18 is entered. L is incremented by one and � by N − 1 as long as the
combined bandwidth of the chosen objects remains less than NB/(N − 1). The first
phase ends when no more objects can be brought in from ŌC. At its end, NL objects
are marked for sharing.

Fig. 2. Placement example

In the second phase, the objects chosen for
sharing are partitioned among the nodes. In the
first step of this phase in lines 29–32, objects
are distributed such that the total bandwidth of
all the objects assigned and totally shared from
a node is at most B/(N − 1). Since distribut-
ing objects without violating the ICCB constraint
is a bin packing problem, for which feasible so-
lutions are known to not exist for all instances,
not all objects can be expected to be success-
fully assigned. The remaining objects are filled
in the available slots of all the caches in the next
step in line 34. Exactly K − L objects are fully
replicated while no object is partially replicated.
Hence, each cache can hold exactly L more ob-
jects for a total of NL objects in all the caches.
Thus, since the total number of objects chosen
for distribution is NL, all objects will be success-
fully assigned to some cache but not all may necessarily be shared.

Object Placement for Cooperative Caches with Bandwidth Constraints 587

Example. To better understand the algorithm, consider the example in Fig. 2. Here
N = 3 and C = 6S so that K = 6. M = 14 objects, and their bandwidths are
indicated in the boxes. The objects in OC and ŌC are as indicated. ICCB B is 600. Since
B = 600, in the first phase, L = 3 objects and � = 2L = 6 objects as marked in the
figure could be selected for sharing from OC and ŌC, respectively. Btop is 321, Binc is
579, and Btop + Binc = 900 = NB/(N − 1).

In the second phase, eight of the objects selected in the first phase could be dis-
tributed among the three caches using the heuristic in lines 29–32 such that ICCB is
respected. The final object (with lowest bandwidth) is assigned to the first cache but
is marked unshared as otherwise ICCB would be violated. It can be verified that the
objects cannot be partitioned among the caches such that the constraints are satisfied.

Byte hit rate after cooperation increases by 579 Bps for Cache 1 and 486 Bps for each
of the other two nodes. Hit rates for the latter two can be increased by 93/2 = 46.5 Bps
by serving half their requests to the ninth object from Cache 1.

Algorithm complexity: If the objects are sorted by their bandwidths, the complexity
of the algorithm can easily be seen to be O(NK). Otherwise, it is O(NK +M log M),
which is O(M(K + log M)).

3.3 Approximation Ratio

We now derive an approximation ratio for Algorithm PA, assuming Zipf-like distribu-
tion [3] or its generalization, the MZipf distribution [8], for object popularity distri-
butions. The approximation ratio would hold as long as the ratio of the probability of
accesses of objects with ranks i and i + 1 is at most i+1

i .
PA chooses L and (N − 1)L contiguous objects from the tail and head of OC and

ŌC, respectively, such that their total bandwidth is maximized subject to not exceeding
NB/(N − 1). Let the two subsets be denoted OPA

C and ŌPA
C , respectively, and let BW(.)

denote the bandwidth function. The increase in hit rate achieved by PA per node is
therefore at most BW(ŌPA

C). (It would be less than BW(ŌPA
C) if the objects OPA

C and ŌPA
C

cannot be partitioned among the nodes.) The hit rate per node obtained by an optimal
algorithm may be higher by less than the bandwidth corresponding to the next N − 1
objects from ŌC. To see this note that since PA could not choose the next N −1 objects,
the total bandwidth of those objects and an additional lightest object from OC along
with objects in OPA

C and ŌPA
C exceeds NB/(N − 1). Hence, choosing any other object

from OC would not enable choosing N − 1 objects from ŌC with larger bandwidth than
the next N − 1.

Let the maximum bandwidth BWmax of any object in OPA
C ∪ ŌPA

C be at most f · B
N−1 ,

where 0 < f < 1, and let R = � 1
f . In general, for 1

n+1 < f ≤ 1
n , R = n holds. Also,

R = � 1
f ⇒ R ≤ 1

f , and hence,

f ≤ 1

R
. (7)

To determine an approximation ratio, we need to determine a lower bound on the
increase to hit rate achieved by PA. As discussed above, it would be less than BW(ŌPA

C)
if objects in OPA

C ∪ ŌPA
C are not all fully shared. If β denotes the bandwidth of objects

in OPA
C ∪ ŌPA

C that are not fully shared, then the increase in hit rate achieved by PA is

588 U.C. Devi, M. Chetlur, and S. Kalyanaraman

given by BW(ŌPA
C) − β. The following lemma provides a lower bound on the sharing

achieved by PA.

Lemma 1. The total bandwidth of the objects that are unreplicated and fully shared at
the end of Phase 2 of PA is at least R

R+1 (BW(OPA
C) + BW(ŌPA

C)).

Proof: The total number of objects chosen for sharing is NL. These objects may be
assigned to one of the N nodes and the maximum number of objects assigned to a
node cannot exceed L. An object assigned to a node may be fully shared if the total
bandwidth of all the objects assigned previously to the same node and the new object is
at most B/(N − 1).

During the partition phase of PA, let Ω be the first object that could not be assigned
in a fully-shared manner, and let w denote its bandwidth. Then for each node C, one of
following conditions hold: (1) The total assigned bandwth in C is at least (B/(N −1)−
w). (2) C is full with L assigned objects (has no empty slots), but the total bandwidth
of the objects assigned to it is less than B/(N − 1).

Let n of the N nodes be of type 1, with condition 1 holding, and the remaining
N − n, of type 2. Since objects are assigned in monotonically decreasing order of their
bandwidths, the bandwidth of every object assigned to a node of type 2 is at least w.
Then, the total bandwidth B, of all the objects before Ω assigned to the N nodes is at
least n(B

N−1 − w) + (N − n)wL. By (7) and the definition of f , the bandwidth of any
object is at most B/(R(N − 1)). Hence, if L ≤ R, the total bandwidth of any subset of
L objects is at most B/(N − 1). Thus, the NL objects in OPA

C ∪ ŌPA
C can be partitioned

among the N nodes such that each is fully shared. Hence, for the rest of the proof take
L > R. Since the total bandwidth expression is an increasing function of L, B is at
least nB

N−1 + ((R + 1)N − (R + 2)n)w. We consider the following cases.

Case 1: n ≤ 1
R+1N . In this case at least R/(R + 1) of the nodes are of type 2, which

are full. Thus, at least a fraction R/(R + 1) of the objects are fully shared. Since the
objects are assigned in the order of decreasing bandwidths, the total shared bandwidth
is at least a fraction R/(R + 1) of the bandwidth of the objects in OPA

C and ŌPA
C .

Case 2: 1
R+1N < n ≤ R

R+1N . The proof for this case is a little involved and hence
omitted due to space constraints. It will be made available in a longer version of the
paper.

Case 3: R
R+1N < n ≤ R+1

R+2N . Since (R + 1)N − (R + 2)n ≥ 0 holds and B ≥
nB

N−1 + ((R + 1)N − (R + 2)n)w, B ≥ R
R+1NB(N − 1).

Case 4: n > R+1
R+2N . In this case, (R + 1)N − (R + 2)n < 0, and hence, nB

N−1 +
((R + 1)N − (R + 2)n)w is a decreasing function of w. If w > 1

R+1
B

N−1 , then since
objects are assigned in decreasing bandwidth order and each of the N nodes has at least
R objects assigned (because as discussed above R < L and the bandwidth of any object
is at most 1

R
B

N−1), B ≥ R · N · 1
R+1

B
N−1 ≥ R

R+1 (BW(OPA
C) + BW(ŌPA

C)). If not B is

minimized for w = 1
R+1

B
N−1 and hence B ≥ nB

N−1 +((R+1)N −(R+2)n) 1
R+1

B
N−1 ,

which simplifies to NB
N−1 − n

R+1
B

N−1 . This expression is minimized at n = N , yielding

B ≥ R
R+1

NB
N−1 . �

Object Placement for Cooperative Caches with Bandwidth Constraints 589

Thus, the bandwidth of objects not fully shared is at most 1
R+1 (BW(OPA

C) + BW(ŌPA
C))

and the increase in hit rate is at least R
R+1BW(ŌPA

C) − 1
R+1BW(OPA

C).
The lemma below provides a lower bound on BW(ŌPA

C). Recall that K = C/S
denotes the number of objects that fit in a cache.

Lemma 2. If the object popularity distribution follows Zipf-like or MZipf, then

BW(ŌPA
C) ≥ ln K+(N−1)L

K+1

ln K+1
max(K−L,1)

× BW(OPA
C).

Proof: Follows from the facts that the probability of accessing an object at rank i is
proportional to 1/i for the Zipf object popularity distribution and lower than 1/i for
Zipf-like and MZipf distributions, and

∑n1
i=1

1
i − ln(n1) ≥

∑n2
i=1

1
i − ln(n2 + 1), for

all n1, n2 ≥ 1. �

We are now ready to provide an approximation ratio. Let α = L/K .
Theorem 2. The approximation ratio of PA when object popularities conform to the

Zipf, Zipf-like or MZipf distributions is given by L+1
L

(R+1) ln(K+(N−1)L
K+1)

R ln((K+(N−1)L)
K+1 −ln(K+1

max K−L,1)
,

which is, L+1
L

(R+1) ln(1+(N−1)α
1+ 1

K

)

R ln(1+(N−1)α
1+ 1

K

)+ln(
max(1−α, 1

K
)

1+ 1
K

)
, which is L+1

L
(R+1) ln(1+(N−1)α)

R ln(1+(N−1)α)+ln(max(1−α,ε))+

δ.
Proof: As discussed earlier, by Lemma 1, the effective increase to hit rate achieved by
Algorithm PA is at least (R · BW(ŌPA

C) − BW(OPA
C))/(R + 1). Letting BW(ŌPA

C) = κ ·
BW(OPA

C), the increase to hit rate achieved by PA is at least (Rκ−1)·BW(OPA
C)/(R+1).

To determine the approximation ratio, we need to determine a bound on the increase
in hit rate achieved by an optimal algorithm. As discussed at the beginning of this
subsection, this value is at most the bandwidth of an additional N − 1 objects from ŌC.
Since objects are arranged in decreasing order of bandwidths, the total bandwidth of
these additional objects would be at most the bandwidth of any N − 1 objects in ŌPA

C .
Since |ŌPA

C | = (N−1)L, the increase in hit rate achieved by an optimal algorithm would
be at most (N−1)(L+1)

(N−1)L times BW(ŌPA
C) = (L+1)

L × κ · BW(OPA
C). The approximation

ratio, given by the ratio of the optimal increase in hit rate to the effective increase
achieved by PA is hence (R+1)κ

Rκ−1 · L+1
L . Using the lower bound provided by Lemma 2

for κ and simplifying, we obtain the approximation ratios in the lemma. �
Discussion: The approximation ratio ρ in Thm. 2 decreases with increasing N and R.
For a given N and R, ρ initially decreases with α and then increases. ρ is valid for all
values except when N , R, and L are all at most 3, in which case, cooperation is of very
little or no use anyway. When K is at least 1000, for α ≤ 0.1, that is, when at most
10% of the objects in cache are chosen for sharing, ρ < 2.96 for N ≥ 5, for all R, and
ρ < 2.7 for R ≥ 3, for all N . In general, ρ is small if α is not large (≤ 0.7) or one
of R and N is not too small, with values at least 3 and 5, respectively, which are very
reasonable. Recall that the achievable increase in hit rate depends on the ICCB B and
for an appreciable increase, say x%, B should be at least x% of the total bandwidth
of all the objects. For the Zipf distribution, the bandwidth of the object with rank n
is 1/(n · ln(K)) of the total object bandwidth. Hence, for x ≥ 10, the bandwidths of
objects with rank 10 and higher is less than 1/90th the total bandwidth for a modest

590 U.C. Devi, M. Chetlur, and S. Kalyanaraman

M = 10000. Thus, R ≥ 9, and in practice can be expected to be much higher. For
R ≥ 10, ρ ≤ 1.76 and ρ ≤ 3.48 for α as high as 0.99 and 0.9, respectively, for all N .
The approximation ratio of the placement algorithm PA can thus be taken to be a small
constant for all practical purposes.

3.4 Extensions to Algorithm PA

Hierarchical Caching: Suppose a second-level parent cache of K ′ objects is provided
in the path of the object requests, e.g., at the CC in the wireless backhaul. In the absence
of cooperation among child nodes, the most popular K objects will be replicated at
the children, while the next K ′ popular objects would be placed at the parent. Which
objects to unreplicate and share at the children when cooperation is enabled would
depend on the limit on the amount by which the content served from the parent node
may be increased. If this traffic need not be limited as long as the total hit rate increases,
then an object placement may be obtained by assuming a cache of K + K ′ objects at
each child and applying algorithm PA, but restricting L to at most K . The K − L most
popular objects should then be replicated at all the child nodes, the next K ′ objects
placed at the parent, and the next NL objects placed in one of the children as specified
by PA. The reason for considering K + K ′ objects as opposed to K during placement
is to reduce the mean bandwidth of the objects that are shared, and thereby improve
the efficiency of partitioning them in a fully shared manner without violating ICCB. If
there is a restriction on the traffic that may be increased on the parent to child links,
the restriction should be used to determine the cache size that PA should assume to
determine a placement.

Relaxing the assumptions: The most restrictive of the similarity characteristics as-
sumed for the caches and objects is that of identical sizes for all the objects. Identical
object popularity distributions can be expected in a cluster of a few tens of BSs, which
as discussed in Sec. 4, are sufficient in practice to achieve close to ideal hit rates. This is
because at least a couple of thousand BSs are typically deployed in a mid-size city and
hence 20-30 BSs can be expected to cover just a fraction of a city with somewhat ho-
mogeneous object access patterns. Homogeneity would also be enhanced by the larger
expected mobility within a smaller region. The assumption of identical cache sizes may
be expected to hold for the same reason that the number of BSs needed for good hit
rates can be found within a small geography. If the assumption does not hold, it may
easily be overcome by running PA with the smallest of the cache sizes. The additional
capacity in the larger caches may simply be used for storing additional objects beyond
those specified by PA for higher hit rates at the larger caches. Handling non-identical
object sizes is discussed below.

Non-Identical Object Sizes: If object sizes are not identical, then since it is the band-
width per unit size that matters, objects should be ordered by their popularity instead of
bandwidths. Next, instead of choosing N − 1 objects from ŌC for every object chosen
from OC, Algorithm PA should be modified to choose the maximum number of objects
whose combined size does not exceed N − 1 times the size of an object chosen from
OC. While non-homogeneity in object sizes can lead to inefficiencies in object selection
and distribution, they can be expected to be minimal when the object pool is large.

Object Placement for Cooperative Caches with Bandwidth Constraints 591

4 Empirical Evaluation

In this section, we present the results of simulations conducted to evaluate the perfor-
mance of our placement algorithm. We conducted experiments for varying values of
total objects M , nodes N , and cache size C. Object size S was set to 1GB. Taking the
total bandwidth served by BSs into account, the total object bandwidth was set to 20
Mbps, yielding a request rate of 0.0025/sec. ICCB B was set to 5 Mbps, for a maxi-
mum achievable increase of 25% to the hit rate. The M-Zipf distribution [8], in which
the probability of accessing object of rank i is proportional to 1/(i + q)γ , was used for
object popularities, with q = 50 γ = 0.75.

0 20 40 60 80 100
0

5

10

15

20

25

no. of cooperating nodes

in
cr

ea
se

 in
 h

it
ra

te
 (

%
)

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

no. of cooperating nodes
al

ph
a

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

0 20 40 60 80 100
20

40

60

80

100

no. of cooperating nodes

hi
t r

at
e

(%
)

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

0 20 40 60 80 100
0

50

100

150

no. of cooperating nodes

ba
nd

w
id

th
 o

ve
rh

ea
d

(%
)

30% cache
20% cache
10% cache
3% cache
2% cache
1% cache

(a) (b)

(c) (d)

Fig. 3. Performance evaluation results for the placement algorithm
PA. (a) Additional hit rates for varying % of cache sizes. (b) Values
of α = L/K for the runs in (a). (c) Hit rates with varying N when
ICCB is not a limitation. (d) Bandwidth overhead for the runs in
(c). The legend entries are in the curve order in insets (a) and (c)
and reverse order in insets (b) and (d).

Representative results
with M = 20, 000, that
is a total corpus size
of 20 TB, and varying
cache sizes as indicated
are plotted in Fig. 3.
Inset (a) plots the in-
crease in hit rate as a
% of the total object
bandwidth of 20 Mbps.
Since B is 25% of the
total object bandwidth,
the maximum achiev-
able increase to the hit
rate is 25%. The hit rate
increase is rather low
for small values of N .
We also determined an
upper bound to the opti-
mal achievable increase
for all the cases. The
plots of the optimal in-
crease almost coincide
with the observed in-
crease and hence have
been omitted. The low
hit rates for small N are therefore not due to the partitioning inefficiency of PA. This
is because for M = 20, 000, the bandwidth due to the most popular object is roughly
0.001% of the total bandwidth, hence R is quite large, easily exceeding 200. The ap-
proximation ratio as given by Thm. 2 is therefore close to 1. The low hit rates for small
N are rather due to the larger values for B/(N − 1), and hence a large L, as indicated
by the plots of α = L/K in Fig. 3(b). For large L, the ratio of the mean bandwidth
of objects in OPA

C and ŌPA
C is high. Since the total bandwidth of the two subsets is con-

strained to be at most NB/(N − 1), BW(ŌPA
C), as a fraction of the total bandwidth,

is low. Recall that the optimal increase in hit rate only slightly exceeds BW(ŌPA
C), and

hence when N is small, the increase, both optimal and observed, are low. The hit rate

592 U.C. Devi, M. Chetlur, and S. Kalyanaraman

increases with increasing N and is quite good for N > 10. The difference in the in-
crease achieved with the largest (30% cache) and smallest caches (1% cache) is around
6% for N ≤ 10, with the maximum of 6.83% seen for N = 5. The gap narrows for
higher values of N . Similar trends were observed for varying M and object size S. The
results indicate that a few tens of cooperating nodes are sufficient to achieve adequate
hit rates. Also, the number of nodes needed to achieve a given increase to hit rate in-
creases with decreasing cache size, by a factor of around two for an order of magnitude
smaller cache. This is despite the fact that the base hit rate of a larger cache is higher.

Inset (c) plots the maximum cumulative hit rate achieved by PA when
ICCB is not constrained. In this case, we also determined the minimum ICCB
needed to achieve the observed hit rate. Bandwidth overhead %, given by
minimum needed ICCB−increase in hit rate

increase in hit rate × 100% is plotted in inset (d). It can
be noted from inset (c) that a hit rate of 100% is reached at N = N100% =

	 total corpus size
cache size
, which is as expected. However, the bandwidth overhead at N ≤

N100% is quite high. This is because when N ≤ N100%, the caching system is space
constrained, and hence, all the objects are unreplicated and fully shared, including the
popular, high-bandwidth objects. As N increases beyond N100%, the number of high
bandwidth objects that are replicated increases, bringing down the bandwidth overhead.
N needed to achieve 100% hit rate with minimal overhead is roughly an order of mag-
nitude larger for a cache that is an order of magnitude smaller.

5 Conclusion

We have explored cooperative caching among the edge elements of a wireless infras-
tructure to ease the traffic stress expected in the wireless backhaul and core due to the
manifold increase in video traffic. We have proposed an efficient object placement al-
gorithm for cooperative caching that has a constant factor approximation ratio under
practical conditions. Our simulation studies show that, in practice, the performance of
the algorithm is very close to the optimal, and enabling cooperation among a few 10s
of nodes may be sufficient to reap significant benefits. The viability of converting the
proposed algorithm to a distributed one will be considered as part of future work.

References

1. Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., Ramakrishnan, K.K.: Optimal content
placement for a large-scale vod system. In: ACM Co-NEXT (2010)

2. Borst, S., Gupta, V., Walid, A.: Distributed caching algorithms for content distribution net-
works. In: INFOCOM (2010)

3. Breslan, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distributions:
Evidence and implications. In: Proceedings of IEEE INFOCOM, pp. 126–134 (1999)

4. Chankhunthod, A., Danzig, P., Neerdaels, C., Schwartz, M., Worrell, K.: A hierarchical in-
ternet object cache. In: USENIX Annual Technical Conference, pp. 153–163 (September
1996)

5. Cisco Systems Inc. Cisco visual networking index: Global mobile data traffic forecast update
(2009-2014)

Object Placement for Cooperative Caches with Bandwidth Constraints 593

6. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: A scalable wide-area web cache
sharing protocol. In: SIGCOMM, pp. 254–265 (September 1998)

7. Garey, M., Johnson, D.: Computers and Intractability: a Guide to the Theory of NP-
Completeness, vol. ch. 4. W. H. Freeman and company, NY

8. Hafeeda, M., Saleh, O.: Traffic modeling and proportional partial caching for peer-to-peer
systems. IEEE/ACM Transactions on Networking 16(6), 1447–1460 (2008)

9. Han, D., Andersen, D., Kaminsky, M., Papagiannaki, D., Seshan, S.: Hulu in the neighbor-
hood. In: COMSNETS (2011)

10. Kangasharju, J., Roberts, J.W., Ross, K.W.: Object replication strategies for content distribu-
tion networks. Computer Communication Journal 25(4), 376–383 (2002)

11. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Placement algorithms for hierarchical coop-
erative caching. In: SODA, pp. 586–595 (1998)

12. Song, Y., Ramasubramanian, V., Sirer, E.: Cobweb: a proactive analysis-driven approach to
content distribution. In: SOSP, Poster (2005)

13. Venkataramani, A., Weidmann, P., Dahlin, M.: Bandwidth constrained placement in a wan.
In: Principles of Distributed Computing, pp. 134–143 (2001)

14. Xu, Z., Bhuyan, L.: Qos-aware object replica placement in cdns. In: GLOBECOM (2005)

	Object Placement for Cooperative Caches with Bandwidth Constraints
	Introduction
	System Model and Problem Formulation
	Hardness Result and Approximation Algorithm
	Hardness Proof
	Efficient Placement Algorithm
	Approximation Ratio
	Extensions to Algorithm PA

	Empirical Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

