Abstract
The emergence of different metaheuristics and their new variants in recent years has made the definition of the term Evolutionary Algorithms unclear. Originally, it was coined to put a group of stochastic search algorithms that mimic natural evolution together. While some people would still see it as a specific term devoted to this group of algorithms, including Genetic Algorithms, Genetic Programming, Evolution Strategies, Evolutionary Programming, and to a lesser extent Differential Evolution and Estimation of Distribution Algorithms, many others would regard “Evolutionary Algorithms” as a general term describing population-based search methods that involve some form of randomness and selection. In this chapter, we re-visit the fundamental question of “what is an Evolutionary Algorithm?” not only from the traditional viewpoint but also the wider, more modern perspectives relating it to other areas of Evolutionary Computation. To do so, apart from discussing the main characteristics of this family of algorithms we also look at Memetic Algorithms and the Swarm Intelligence algorithms. From our discussion, we see that establishing semantic borders between these algorithm families is not always easy, nor necessarily useful. It is anticipated that they will further converge as the research from these areas cross-fertilizes each other.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., Hoffmeister, F., Schwefel, H.: A Survey of Evolution Strategies. In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA 1991), pp. 2–9. Morgan Kaufmann Publishers Inc., San Francisco (1991)
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Oxford University Press, Inc., USA (1997)
Baluja, S., Caruana, R.A.: Removing the Genetics from the Standard Genetic Algorithm. In: Prieditis, A., Russell, S.J. (eds.) Proceedings of the Twelfth International Conference on Machine Learning (ICML 1995), pp. 38–46. Morgan Kaufmann Publishers Inc., San Francisco (1995)
Barricelli, N.A.: Esempi Numerici di Processi di Evoluzione. Methodos 6(21-22), 45–68 (1954)
Barricelli, N.A.: Symbiogenetic Evolution Processes Realized by Artificial Methods. Methodos 9(35-36), 143–182 (1957)
Belew, R.K., Booker, L.B. (eds.): Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA 1991), July13–16, pp. 13–16. Morgan Kaufmann Publishers Inc., USA (1991)
Beyer, H.: The Theory of Evolution Strategies, Natural Computing Series, Springer, New York (May 27, 2001); ISBN: 3-540-67297-4
Beyer, H., Schwefel, H.: Evolution Strategies – A Comprehensive Introduction. Natural Computing: An International Journal 1(1), 3–52 (2002); doi10.1023/A:1015059928466
Blum, C.: Ant Colony Optimization: Introduction and Recent Trends. Physics of Life Reviews 2(4), 353–373 (2005); doi:10.1016/j.plrev.2005.10.001
Blum, C., Dorigo, M.: The Hyper-Cube Framework for Ant Colony Optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 34(2), 1161–1172 (2004); doi:10.1109/TSMCB.2003.821450
Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys (CSUR) 35(3), 268–308 (2003); doi:10.1145/937503.937505
Bonabeau, E.W., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Inc., USA (1999); ISBN: 0195131592
Bonabeau, E.W., Dorigo, M., Théraulaz, G.: Inspiration for Optimization from Social Insect Behavior. Nature 406, 39–42 (2000); doi:10.1038/35017500
Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu Search Hyperheuristic for Timetabling and Rostering. Journal of Heuristics 9(6), 451–470 (2003); doi:10.1023/B:HEUR.0000012446.94732.b6
Campos, M., Bonabeau, E.W., Théraulaz, G., Deneubourg, J.: Dynamic Scheduling and Division of Labor in Social Insects. Adaptive Behavior 8(2), 83–95 (2000); doi:10.1177/105971230000800201
Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 37(1), 28–41 (2007); doi:10.1109/TSMCB.2006.883271
Caponio, A., Neri, F., Tirronen, V.: Super-fit Control Adaptation in Memetic Differential Evolution Frameworks. Soft Computing – A Fusion of Foundations, Methodologies and Applications 13(8-9), 811–831 (2009); doi:10.1007/s00500-008-0357-1
Chen, W.X., Weise, T., Yang, Z.Y., Tang, K.: Large-Scale Global Optimization Using Cooperative Coevolution with Variable Interaction Learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G., et al. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010), doi:10.1007/978-3-642-15871-1-31
Chiong, R. (ed.): Nature-Inspired Algorithms for Optimisation, April 30. SCI, vol. 193. Springer, Heidelberg (2009); ISBN: 3-642-00266-8, 3-642-00267-6, doi:10.1007/978-3-642-00267-0
Chiong, R., Weise, T., Michalewicz, Z. (eds.): Variants of Evolutionary Algorithms for Real-World Applications. Springer, Heidelberg (2011)
Clerc, M., Kennedy, J.: The Particle Swarm – Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002); doi:10.1109/4235.985692
Coello Coello, C.A., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation, vol. 5. Springer, Heidelberg (2002); doi:10.1007/978-0-387-36797-2
Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001); doi:10.1007/3-540-44629-X-11
Dawkins, R.: The Selfish Gene, 1st, 2nd edn. Oxford University Press, Inc., USA (1976); ISBN:0-192-86092-5
De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD thesis, University of Michigan: Ann Arbor, MI, USA (1975)
De Jong, K.A.: Genetic Algorithms are NOT Function Optimizers. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms (FOGA 1992), pp. 5–17. Morgan Kaufmann Publishers Inc., San Francisco (1992)
K. A. De Jong. Evolutionary Computation: A Unified Approach, 2006, volume 4 of Complex Adaptive Systems. MIT Press: Cambridge, MA, USA.
Deb, K., Goldberg, D.E.: Analyzing Deception in Trap Functions. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms (FOGA 1992), pp. 93–108. Morgan Kaufmann Publishers Inc., San Francisco (1992)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley Interscience Series in Systems and Optimization, John Wiley & Sons Ltd., New York (2001)
Deb, K., Pratab, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002); doi:10.1109/4235.996017
Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 26(1), 29–41 (1996); doi:10.1109/3477.484436, ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf
Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books. MIT Press (July 2004); ISBN: 0-262-04219-3
Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science (MHS 1995), pp. 39–43. IEEE Computer Society, USA (1995); doi:10.1109/MHS.1995.494215
Eberhart, R.C., Shi, Y.: A Modified Particle Swarm Optimizer. In: Simpson, P.K. (ed.) The 1998 IEEE International Conference on Evolutionary Computation (CEC 1998), pp. 69–73. IEEE Computer Society, Los Alamitos (1998); doi:10.1109/ICEC.1998.699146
Eiben, Á.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn. Natural Computing Series, ch. 10, pp. 173–188. Springer, New York (2003)
Farooq, M.: Bee-Inspired Protocol Engineering – From Nature to Networks. Natural Computing Series, vol. 15. Springer, New York (2009); ISBN: 3-540-85953-5, doi:10.1007/978-3-540-85954-3
Fogel, L.J.: On the Organization of Intellect. PhD thesis, University of California (UCLA): Los Angeles, CA, USA (1964)
Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution. John Wiley & Sons Ltd., USA (1966); ISBN: 0471265160
Fraser, A.S.: Simulation of Genetic Systems by Automatic Digital Computers. I. Introduction. Australian Journal of Biological Science (AJBS) 10, 484–491 (1957)
Gao, Y., Duan, Y.: An Adaptive Particle Swarm Optimization Algorithm with New Random Inertia Weight. In: Huang, D.-S., Heutte, L., Loog, M. (eds.) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques - ICIC 2007. LNCS, vol. 2, pp. 342–350. Springer, Heidelberg (2007), doi:10.1007/978-3-540-74282-1-39
Gao, Y., Ren, Z.: Adaptive Particle Swarm Optimization Algorithm With Genetic Mutation Operation. In: Lei, J., Yao, J., Zhang, Q. (eds.) Proceedings of the Third International Conference on Advances in Natural Computation (ICNC’07), vol. 2, pp. 211–215. IEEE Computer Society Press, Los Alamitos (2007), doi:10.1109/ICNC.2007.161
Glover, F., Kochenberger, G.A. (eds.): Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57. Kluwer, Springer Netherlands, Dordrecht, Netherlands (2003), doi:10.1007/b101874
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co, USA (1989); ISBN: 0-201-15767-5
Gong, M., Jiao, L., Zhang, L.: Baldwinian Learning in Clonal Selection Algorithm for Optimization. Information Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal 180(8), 1218–1236 (2010); doi:10.1016/j.ins.2009.12.007
Gonzalez, T.F. (ed.): Handbook of Approximation Algorithms and Metaheuristics, Chapmann & Hall/CRC Computer and Information Science Series. Chapman & Hall/CRC, Boca Raton, FL (2007)
Grefenstette, J.J.: Deception Considered Harmful. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms (FOGA 1992), pp. 75–91. Morgan Kaufmann Publishers Inc., USA (1992)
Hansen, N., Ostermeier, A.: Adapting Arbitrary Normal Mutation Distributions in Evolution Strategies: The Covariance Matrix Adaptation. In: Jidō, K., Gakkai, S. (eds.) Proceedings of IEEE International Conference on Evolutionary Computation (CEC 1996), pp. 312–317. IEEE Computer Society Press, Los Alamitos (1996); doi:10.1109/ICEC.1996.542381
Hansen, N., Ostermeier, A.: Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaption: The (μ/μ I ,λ)-CMA-ES. In: Zimmermann, H. (ed.) Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT 1997), vol. 1, pp. 650–654. ELITE Foundation, Germany (1997)
Hansen, N., Ostermeier, A.: Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9(2), 159–195 (2001)
Hansen, N., Ostermeier, A., Gawelczyk, A.: On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA 1995), pp. 57–64. Morgan Kaufmann Publishers Inc., San Francisco (1995)
Hart, W.E., Krasnogor, N., Smith, J.E.: Memetic Evolutionary Algorithms. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Recent Advances in Memetic Algorithms. Studies in Fuzziness and Soft Computing, ch.1, vol. 166, pp. 3–27. Springer, Heidelberg (2005)
Grefenstette, J.J.: Proceedings of the 1st International Conference on Genetic Algorithms and their Applications (ICGA 1985), June 24-26, pp. 24–26. Carnegy Mellon University (CMU), Lawrence Erlbaum Associates, Hillsdale, USA (1985)
Hillis, W.D.: Co-Evolving Parasites Improve Simulated Evolution as an Optimization Procedure. Physica D: Nonlinear Phenomena 42(1-2), 228–234 (1990); doi:10.1016/0167-2789(90)90076-2
Hitch-Hiker’s Guide to Evolutionary Computation: A List of Frequently Asked Questions (FAQ) (HHGT) (March 29, 2000)
Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, USA (1975); ISBN: 0-472-08460-7
Holland, J.H.: Genetic Algorithms. Scientific American 267(1), 44–50 (1992)
Igel, C., Toussaint, M.: On Classes of Functions for which No Free Lunch Results Hold. Information Processing Letters 86(6), 317–321 (2003); doi:10.1016/S0020-0190(03)00222-9
Jastrebski, G.A., Arnold, D.V.: Improving Evolution Strategies through Active Covariance Matrix Adaptation. In: Yen, G.G., et al. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation CEC 2006, pp. 9719–9726. IEEE Computer Society, Los Alamitos (2006); doi:10.1109/CEC.2006.1688662
Kendall, G., Cowling, P., Soubeiga, E.: Choice Function and Random HyperHeuristics. In: Tan, K.C., et al. (eds.) Recend Advances in Simulated Evolution and Learning – Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution And Learning (SEAL 2002). Advances in Natural Computation, vol. 2, pp. 667–671. World Scientific Publishing Co, Singapore (2002)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks (ICNN 1995), vol. 4, pp. 1942–1948. IEEE Computer Society Press, Los Alamitos (1995); doi:10.1109/ICNN.1995.488968
Kononova, A.V., Ingham, D.B., Pourkashanian, M.: Simple Scheduled Memetic Algorithm for Inverse Problems in Higher Dimensions: Application to Chemical Kinetics. In: Michalewicz, Z., Reynolds, R.G. (eds.) Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2008), pp. 3905–3912. IEEE Computer Society Press, Los Alamitos (2008); doi:10.1109/CEC.2008.4631328
Korošec, P., Šilc, J., Filipič, B.: The Differential Ant-Stigmergy Algorithm. Information Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal (2011)
Koza, J.R.: Concept Formation and Decision Tree Induction using the Genetic Programming Paradigm. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 124–128. Springer, Heidelberg (1991); doi:10.1007/BFb0029742
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1st edn. Bradford Books, MIT Press (1992); 2nd edn. (1993)
Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A.: Use of Automatically Defined Functions and Architecture-Altering Operations in Automated Circuit Synthesis Using Genetic Programming. In: Koza, J.R., et al. (eds.) Proceedings of the First Annual Conference of Genetic Programming (GP 1996), Complex Adaptive Systems, Bradford Books, pp. 132–149. MIT Press, Cambridge (1996)
Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. SCI, vol. 147. Springer, Heidelberg (2008); doi:10.1007/978-3-540-69281-2
Krasnogor, N., Smith, J.E.: A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Issues. IEEE Transactions on Evolutionary Computation 9(5), 474–488 (2005); doi:10.1109/TEVC.2005.850260
Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms – A New Tool for Evolutionary Computation. Genetic and Evolutionary Computation, vol. 2. Springer US, USA (2001)
Le, M.N., Ong, Y., Jin, Y., Sendhoff, B.: Lamarckian Memetic Algorithms: Local Optimum and Connectivity Structure Analysis. Memetic Computing 1(3), 175–190 (2009); doi:10.1007/s12293-009-0016-9
Mendes, R., Kennedy, J., Neves, J.: Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation 8(3), 204–210 (2004); doi:10.1109/TEVC.2004.826074
Mendes, R.R.F., de Voznika, F.B., Freitas, A.A., Nievola, J.C.: Discovering Fuzzy Classification Rules with Genetic Programming and Co-evolution. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 314–325. Springer, Heidelberg (2001), doi:10.1007/3-540-44794-6-26
Meyer-Nieberg, S., Beyer, H.: Self-Adaptation in Evolutionary Algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, ch. 3, vol. 54, pp. 47–75. Springer, Heidelberg (2007), doi:10.1007/978-3-540-69432-8-3
Michalewicz, Z.: A Perspective on Evolutionary Computation. In: Yao, X. (ed.) AI-WS 1993 and 1994. LNCS, vol. 956, pp. 73–89. Springer, Heidelberg (1995), doi:10.1007/3-540-60154-6-49
Michalewicz, Z., Schaffer, J.D., Schwefel, H.-P., Fogel, D.B., Kitano, H.: Proceedings of the First IEEE Conference on Evolutionary Computation (CEC 1994), June 27-29, pp. 27–29. IEEE Computer Society Press, Los Alamitos (1997)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics, 2nd extended edn. Springer, Heidelberg (2004)
Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program C3P 826, California Institute of Technology (Caltech), Caltech Concurrent Computation Program (C3P), Pasadena (1989)
Neri, F., Tirronen, V., Kärkkäinen, T., Rossi, T.: Fitness Diversity based Adaptation in Multimeme Algorithms: A Comparative Study. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 2374–2381. IEEE Computer Society, Los Alamitos (2007); doi:10.1109/CEC.2007.4424768
Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.: An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 4(2) (April 2007); doi:10.1109/TCBB.2007.070202
Neri, F., Toivanen, J., Mäkinen, R.A.E.: An Adaptive Evolutionary Algorithm with Intelligent Mutation Local Searchers for Designing Multidrug Therapies for HIV. Applied Intelligence – The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies 27(3), 219–235 (2007); doi:10.1007/s10489-007-0069-8
Nguyen, Q.H., Ong, Y., Lim, M.H., Krasnogor, N.: Adaptive Cellular Memetic Algorithms. Evolutionary Computation 17(2), 231–256 (2009); doi:10.1162/evco.2009.17.2.231
Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to Complex Combinatorial Search. Caltech Concurrent Computation Program 790, California Institute of Technology (Caltech), Caltech Concurrent Computation Program (C3P), Pasadena (1989)
Norman, M.G., Moscato, P.: A Competitive and Cooperative Approach to Complex Combinatorial Search. In: Proceedings of the 20th Informatics and Operations Research Meeting (20th Jornadas Argentinas e Informática e Investigación Operativa) (JAIIO 1991), pp. 3.15–3.29 (1991); Also published as Technical Report Caltech Concurrent Computation Program, Report. 790, California Institute of Technology, Pasadena, California, USA (1989)
Ong, Y., Keane, A.J.: Meta-Lamarckian Learning in Memetic Algorithms. IEEE Transactions on Evolutionary Computation 8(2), 99–110 (2004); doi:10.1109/TEVC.2003.819944
Ong, Y., Lim, M.H., Zhu, N., Wong, K.: Classification of Adaptive Memetic Algorithms: A Comparative Study. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 36(1), 141–152 (2006); doi:10.1109/TSMCB.2005.856143
Parrish, J.K., Hamner, W.M. (eds.): Animal Groups in Three Dimensions: How Species Aggregate. Cambridge University Press, Cambridge (1997); doi:10.2277/0521460247, ISBN: 0521460247
Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises UK Ltd., UK (2008)
Potter, M.A., De Jong, K.A.: A Cooperative Coevolutionary Approach to Function Optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994); doi:10.1007/3-540-58484-6-269
Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), 1–29 (2000)
Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Farnborough (1965)
Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. PhD thesis, Technische Universität Berlin: Berlin, Germany (1971)
Rechenberg, I.: Evolutionsstrategie 1994. Werkstatt Bionik und Evolutionstechnik, vol. 1. Frommann-Holzboog Verlag, Germany (1994)
Schwefel, H.: Kybernetische Evolution als Strategie der exprimentellen Forschung in der Strömungstechnik. Master’s thesis, Technische Universität Berlin: Berlin, Germany (1965)
Schwefel, H.: Experimentelle Optimierung einer Zweiphasendüse Teil I. Technical Report 35, AEG Research Institute: Berlin, Germany, Project MHD–Staustrahlrohr 11.034/68 (1968)
Schwefel, H.: Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische Universität Berlin, Institut für Meß- und Regelungstechnik, Institut für Biologie und Anthropologie: Berlin, Germany (1975)
Schwefel, H.: Evolution and Optimum Seeking. Sixth-Generation Computer Technology Series. John Wiley & Sons Ltd., USA (1995); ISBN: 0-471-57148-2
Smith, J.E.: Coevolving Memetic Algorithms: A Review and Progress Report. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 37(1), 6–17 (2007); doi:10.1109/TSMCB.2006.883273
Srinivas, N., Deb, K.: Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221–248 (1994); doi:10.1162/evco.1994.2.3.221
Tang, J., Lim, M.H., Ong, Y.: Diversity-Adaptive Parallel Memetic Algorithm for Solving Large Scale Combinatorial Optimization Problems. Soft Computing – A Fusion of Foundations, Methodologies and Applications 11(9), 873–888 (2007); doi:10.1007/s00500-006-0139-6
Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An Enhanced Memetic Differential Evolution in Filter Design for Defect Detection in Paper Production. Evolutionary Computation 16(4), 529–555 (2008); doi:10.1162/evco.2008.16.4.529
Wang, P., Weise, T., Chiong, R.: Novel Evolutionary Algorithms for Supervised Classification Problems: An Experimental Study. Evolutionary Intelligence 4(1), 3–16 (2011); doi:10.1007/s12065-010-0047-7
Weise, T.: Global Optimization Algorithms – Theory and Application. it-weise.de (self-published), Germany (2009), http://www.it-weise.de/projects/book.pdf
Weise, T., Tang, K.: Evolving Distributed Algorithms with Genetic Programming. IEEE Transactions on Evolutionary Computation (to appear, 2011)
Weise, T., Podlich, A., Gorldt, C.: Solving Real-World Vehicle Routing Problems with Evolutionary Algorithms. In: Chiong, R., Dhakal, S. (eds.) Natural Intelligence for Scheduling, Planning and Packing Problems. SCI, ch.2, vol. 250, pp. 29–53. Springer, Heidelberg (2009), doi:10.1007/978-3-642-04039-9-2
Weise, T., Podlich, A., Reinhard, K., Gorldt, C., Geihs, K.: Evolutionary Freight Transportation Planning. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 768–777. Springer, Heidelberg (2009), doi:10.1007/978-3-642-01129-0-87
Weise, T., Zapf, M., Chiong, R., Nebro Urbaneja, A.J.: Why Is Optimization Difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. SCI, ch. 1, vol. 193, pp. 1–50. Springer, Heidelberg (2009); doi:10.1007/978-3-642-00267-0-1
Weise, T., Niemczyk, S., Chiong, R., Wan, M.: A Framework for Multi-Model EDAs with Model Recombination. In: Proceedings of the 4th European Event on Bio-Inspired Algorithms for Continuous Parameter Optimisation (EvoNUM 2011), Proceedings of the European Conference on the Applications of Evolutionary Computation (EvoAPPLICATIONS 2011). LNCS, Springer, Heidelberg (2011)
Whitley, L.D.: A Genetic Algorithm Tutorial. Statistics and Computing 4(2), 65–85 (1994); doi:10.1007/BF00175354
Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997); doi:10.1109/4235.585893
Yao, X., Liu, Y., Lin, G.: Evolutionary Programming Made Faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999); doi:10.1109/4235.771163
Yu, E.L., Suganthan, P.N.: Ensemble of Niching Algorithms. Information Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal 180(15), 2815–2833 (2010); doi:10.1016/j.ins.2010.04.008
Yuan, Q., Qian, F., Du, W.: A Hybrid Genetic Algorithm with the Baldwin Effect. Information Sciences – Informatics and Computer Science Intelligent Systems Applications: An International Journal 180(5), 640–652 (2010), doi:10.1016/j.ins.2009.11.015
Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach. 43, Eidgenssische Technische Hochschule (ETH) Zürich, Department of Electrical Engineering, Computer Engineering and Networks Laboratory (TIK), Zürich, Switzerland (May 1995)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. 101, Eidgenssische Technische Hochschule (ETH) Zürich, Department of Electrical Engineering, Computer Engineering and Networks Laboratory (TIK), Zürich, Switzerland (May 2001)
Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-Based Search for Combinatorial Optimization: A Critical Survey. Annals of Operations Research 132(1-4), 373–395 (2004), doi:10.1023/B:ANOR.0000039526.52305.af
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Blum, C. et al. (2012). Evolutionary Optimization. In: Chiong, R., Weise, T., Michalewicz, Z. (eds) Variants of Evolutionary Algorithms for Real-World Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23424-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-23424-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23423-1
Online ISBN: 978-3-642-23424-8
eBook Packages: EngineeringEngineering (R0)