Skip to main content

Systematic Construction and Verification Methodology for LDPC Codes

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6843))

Abstract

In this paper, a novel and systematic LDPC codeword construction and verification methodology is proposed. The methodology is composed by the simulated annealing based LDPC codeword constructor, the GPU based high-speed codeword selector and the ant colony optimization based pipeline scheduler. Compared to the traditional ways, this methodology enables us to construct both decoding-performance-aware and hardware-efficiency-aware LDPC codewords in a short time. Simulation results show that the generated codewords have much less cycles (length 6 cycles eliminated) and memory conflicts (75% reduction on idle clocks), while having no BER performance loss compared to WiMAX codewords. Additionally, the simulation speeds up by 490 times under float precision against CPU and a net throughput 24.5Mbps is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallager, R.: Low-density parity-check codes. IRE Trans. Inform. Theory (1962)

    Google Scholar 

  2. Tanner, R.: A recursive approach to low complexity codes. IEEE Trans. Inform. Theory (1981)

    Google Scholar 

  3. MacKay, D.: Good error-correcting codes based on very sparse matrices. IEEE Trans. Inform. Theory (1999)

    Google Scholar 

  4. Richardson, T., Shokrollahi, M., Urbanke, R.: Design of capacity approaching irregular low-density parity-check codes. IEEE Trans. Inform. Theory (2001)

    Google Scholar 

  5. Dorigo, M., Gambardella, L.M.: Ant colonies for the travelling salesman problem. Bio Systems (1997)

    Google Scholar 

  6. Wang, X., Huang, W., Wang, S., Zhang, J., Hu, C.: Delay and Capacity Tradeoff Analysis for MotionCast. To Appear in IEEE/ACM Transactions on Networking (99) (2011), doi:10.1109/TNET.2011.2109042

    Google Scholar 

  7. Wang, X., Bei, Y., Peng, Q., Fu, L.: Speed Improves Delay-Capacity Tradeoff in MotionCast. IEEE Transactions on Parallel and Distributed Systems (99) (2011), doi:10.1109/TPDS.2010.126.

    Google Scholar 

  8. Huang, W., Wang, X.: Throughput and Delay Scaling of General Cognitive Networks. In: Proc. of IEEE INFOCOM 2011, Shanghai, China (2011)

    Google Scholar 

  9. Falcao, G., Silva, V., Sousa, L.: How GPUs can outperform ASICs for fast LDPC decoding. In: Proc. International Conf. on Supercomputing (2009)

    Google Scholar 

  10. Marchand, C., Dore, J., Canencia, L., Boutillon, E.: Conflict resolution for pipelined layered LDPC decoders. In: IEEE Workshop on SiPS (2009)

    Google Scholar 

  11. Vukobratovic, D., Senk, V.: Generalized ACE constrained progressive Eedge-growth LDPC code design. IEEE Comm. Letters (2008)

    Google Scholar 

  12. Hu, Y., Eleftheriou, E., Arnold, D.M.: Regular and irregular progressive edge growth Tanner graphs. IEEE Trans. Inform. Theory (2005)

    Google Scholar 

  13. Blanksby, A.J., Howland, C.J.: A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder. J. Solid-State Circuits (2002)

    Google Scholar 

  14. Cui, Z., Wang, Z., Liu, Y.: High-throughput layered LDPC decoding architecture. IEEE Trans. VLSI Syst. (2009)

    Google Scholar 

  15. Hocevar, D.E.: A reduced complexity decoder architecture via layered decoding of LDPC codes. In: IEEE Workshop on SiPS (2004)

    Google Scholar 

  16. Chen, J., Tanner, R.M., Jones, C., Yan Li, L.: Improved min-sum decoding algorithms for irregular LDPC codes. In: Proc. ISIT (2005)

    Google Scholar 

  17. IEEE Standard for Local and Metropolitan Area Networks Part 16, IEEE Standard 802.16e (2008)

    Google Scholar 

  18. http://en.wikipedia.org/wiki/Simulated_annealing

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, J., Wang, Y., Yu, H. (2011). Systematic Construction and Verification Methodology for LDPC Codes. In: Cheng, Y., Eun, D.Y., Qin, Z., Song, M., Xing, K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2011. Lecture Notes in Computer Science, vol 6843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23490-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23490-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23489-7

  • Online ISBN: 978-3-642-23490-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics