Skip to main content

Synthesizing Routes for Low Sampling Trajectories with Absorbing Markov Chains

  • Conference paper
Web-Age Information Management (WAIM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6897))

Included in the following conference series:

Abstract

The trajectory research has been an attractive and challenging topic which blooms various interesting location based services. How to synthesize routes by utilizing the previous users’ GPS trajectories is a critical problem. Unfortunately, most existing approaches focus on only spatial factors and deal with high sampling GPS data, but low-sampling trajectories are very common in real application scenarios. This paper studies a new solution to synthesize routes between locations by utilizing the knowledge of previous users’ low-sampling trajectories to fulfill their spatial queries’ needs. We provide a thorough treatment on this problem from complexity to algorithms. (1) We propose a shared-nearest-neighbor (SNN) density based algorithm to retrieve a transfer network, which simplifies the problem and shows all possible movements of users. (2) We introduce three algorithms to synthesize route: an inverted-list baseline algorithm, a turning-edge maximum probability product algorithm and a hub node transferring algorithm using an Absorbing Markov Chain model. (3) By using real-life data, we experimentally verify the effectiveness and the efficiency of our three algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: SIGMOD, pp. 94–105 (1998)

    Google Scholar 

  2. Bakalov, P., Hadjieleftheriou, M., Keogh, E.J., Tsotras, V.J.: Efficient trajectory joins using symbolic representations. In: Mobile Data Management, pp. 86–93 (2005)

    Google Scholar 

  3. Chen, L., Özsu, M., Oria, V.: Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491–502. ACM, New York (2005)

    Google Scholar 

  4. Chen, Y., Patel, J.M.: Design and evaluation of trajectory join algorithms. In: GIS, pp. 266–275 (2009)

    Google Scholar 

  5. Chen, Z., Shen, H., Zhou, X.: Discovering popular routes from trajectories. In: ICDE, pp. 900–911 (2011)

    Google Scholar 

  6. Dijkstra, E.: A note on two problems in connection with graphs. Numerische Mathematik 1(269-270), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

    Google Scholar 

  8. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: SODA, pp. 156–165 (2005)

    Google Scholar 

  9. Gómez, L.I., Vaisman, A.A.: Efficient constraint evaluation in categorical sequential pattern mining for trajectory databases. In: EDBT, pp. 541–552 (2009)

    Google Scholar 

  10. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path computation on a road network: A traffic mining approach. In: VLDB, pp. 794–805 (2007)

    Google Scholar 

  11. Grinstead, C., Snell, J.: Introduction to probability. Amer. Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  12. Jarvis, R., Patrick, E.: Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers, 1025–1034 (1973)

    Google Scholar 

  13. Jeung, H., Liu, Q., Shen, H.T., Zhou, X.: A hybrid prediction model for moving objects. In: ICDE, pp. 70–79 (2008)

    Google Scholar 

  14. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE, p. 10 (2006)

    Google Scholar 

  15. Keogh, E.J., Pazzani, M.J.: A simple dimensionality reduction technique for fast similarity search in large time series databases. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 122–133. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)

    Google Scholar 

  17. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate gps trajectories. In: GIS, pp. 352–361 (2009)

    Google Scholar 

  19. Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: KDD, pp. 236–245 (2004)

    Google Scholar 

  20. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: KDD, pp. 637–646 (2009)

    Google Scholar 

  21. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: VLDB, pp. 802–813 (2003)

    Google Scholar 

  22. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M., Mouratidis, K., Sellis, T.K.: On-line discovery of hot motion paths. In: EDBT, pp. 392–403 (2008)

    Google Scholar 

  23. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and indexing of moving objects with unknown motion patterns. In: SIGMOD, pp. 611–622 (2004)

    Google Scholar 

  24. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: ICDE, pp. 673–684 (2002)

    Google Scholar 

  25. Won, J.-I., Kim, S.-W., Baek, J.-H., Lee, J.: Trajectory clustering in road network environment. In: CIDM, pp. 299–305 (2009)

    Google Scholar 

  26. Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from gps trajectories. In: WWW, pp. 791–800 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, C., Lu, J., Chen, H. (2011). Synthesizing Routes for Low Sampling Trajectories with Absorbing Markov Chains. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds) Web-Age Information Management. WAIM 2011. Lecture Notes in Computer Science, vol 6897. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23535-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23535-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23534-4

  • Online ISBN: 978-3-642-23535-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics