Skip to main content

Computing a Basin of Attraction to a Target Region by Solving Bilinear Semi-Definite Problems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6885))

Included in the following conference series:

Abstract

In this paper, we present a sum of squares programming based method for computing a basin of attraction to a target region as large as possible by iteratively searching for Lyapunov-like functions. We start with the basic mathematical notions and show how attraction to a target region can be ensured by Lyapunov-like functions. Then, we present an initial framework for getting an increasing sequence of basins of attraction by iteratively computing Lyapunov-like functions. This framework can be realized by solving bilinear semi-definite problems based on sums of squares decomposition. We implement our algorithm and test it on some interesting examples. The computation results show the usefulness of our method.

This work was partly supported by NSFC-61003021, Beijing Nova Program and SKLSDE-2011ZX-16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chesi, G., Garulli, A., Tesi, A., Vicino, A.: LMI-based Computation of Optimal Quadaraic Lyapunov Function for Odd Polynomial Systems. Int. J. Robust and Nonlinear Control 15, 35–49 (2005)

    Article  MATH  Google Scholar 

  2. Chiang, H.D., Thorp, J.S.: Stability regions of nonlinear dynamical systems: A constructive methodology. IEEE Transactions on Automatic Control 34(12), 1229–1241 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Forsman, K.: Construction of Lyapunov functions using Gröbner bases. In: Proceedings of the 30th IEEE Conference on Decision and Control, pp. 798–799 (1991)

    Google Scholar 

  4. Genesio, R., Tartaglia, M., Vicino, A.: On the estimation of asymptotic stability regions: State of the art and new proposals. IEEE Trans. on Automatic Control 30(8), 747–755 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jarvis-Wloszek, Z.: Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization, Ph.D. Dissertation, University of California (2003)

    Google Scholar 

  6. John Koo, T., Su, H.: A Computational Approach for Estimating Stability Regions. In: Proc. of the IEEE Conference on Computer Aided Control Systems Design, pp. 62–68 (2006)

    Google Scholar 

  7. Khalil, H.C.: Nonlinear Systems. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  8. Koc̈vara, M., Stingl, M.: PENBMI Users Guide (Version 2.1) (2005), http://www.penopt.com

  9. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Practical Stability of Nonlinear System. World Scientific, Singapore (1990)

    Google Scholar 

  10. Levin, A.: An analytical method of estimating the domain of attraction for polynomial differential equations. IEEE Transactions on Automatic Control 39(12), 2471–2475 (1994)

    Google Scholar 

  11. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A Time-Dependent HamiltonCJacobi Formulation of Reachable Sets for Continuous Dynamic Games. IEEE Transactions on Automatic Control 50(7), 947–957 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Noldus, E., Spriet, J., Verriest, E., Van Cauwenberghe, A.: A New Lyapunov Technique for Stability Analysis of Chemical Reactors. Automatica 10, 675–680 (1974)

    Article  Google Scholar 

  13. Pai, M.A.: Power System Stability. North-Holland, Amsterdam (1981)

    Google Scholar 

  14. Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings of the 41st IEEE Conference on Decision and Control, pp. 3482–3487 (2002)

    Google Scholar 

  15. Parrilo, P., Lall, S.: Semidefinite programming relaxations and algebraic optimization in control. Eur. J. Control 9, 307–321 (2003)

    Article  MATH  Google Scholar 

  16. Peterfreund, N., Baram, Y.: Convergence analysis of nonlinear dynamical systems by nested Lyapunov functions. IEEE Trans. on Automatic Control 43(8), 1179–1184 (1998)

    Google Scholar 

  17. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Shields, D.N., Storey, C.: The behaviour of optimal Lyapunov functions. Int. J. Control 21, 561–573 (1975)

    Article  MATH  Google Scholar 

  19. Ratschan, S., She, Z.: Safety Verification of Hybrid Systems by Constraint Propagation-based Abstraction Refinement. ACM Transactions on Embedded Computing Systems 6(1), Article No. 8, 1–23 (2007)

    Google Scholar 

  20. Ratschan, S., She, Z.: Provding a Basin of Attraction to A Target Region of Polynomial Systems by Computation of Lyapunov-like Functions. SIAM Journal on Control and Optimization 48(7), 4377–4394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ryali, V., Moudgalya, K.M.: Practical Stability Analysis of Uncertain Nonlinear Systems. In: National Conference on Control and Dynamic Systems, IIT Bombay, pp. 27–29 (2005)

    Google Scholar 

  22. She, Z., Xia, B., Xiao, R., Zheng, Z.: A semi-algebraic approach for asymptotic stability analysis. Nonlinear Analysis: Hybrid System 3(4), 588–596 (2009)

    Google Scholar 

  23. She, Z., Zheng, Z.: Condition number based complexity estimate for computing local extrema. J. of Computational and Applied Mathematics 230(1), 233–242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. She, Z., Xia, B., Zheng, Z.: Condition number based complexity estimate for solving polynomial systems. J. of Computational and Applied Mathematics 235(8), 2670–2678 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. She, Z., Xue, B., Zheng, Z.: Algebraic Analysis on Asymptotic Stability of Continuous Dynamical Systems. In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation (2011)

    Google Scholar 

  26. Tan, W., Packard, A.: Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming. IEEE Transactions on Automatic Control 53(2), 565–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  28. Vincent, T., Grantham, W.: Nonlinear and Optimal Control Systems. Wiley-Interscience, New York (1997)

    Google Scholar 

  29. Wang, T., Lall, S., West, M.: Polynomial level-set methods for nonlinear dynamical systems analysis. In: Proc. of Allerton Conf. on Communication, Control and Computing (2005)

    Google Scholar 

  30. Weiss, L.: Converse theorems for finite time stability. SAIM Journal on Applied Mathematics, 1319–1324 (1968)

    Google Scholar 

  31. Xu, X., Zhai, G.: Practical Stability and Stabilization of Hybrid and Switched System. IEEE Trans. Automat. Control 50(11), 1897–1903 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

She, Z., Xue, B. (2011). Computing a Basin of Attraction to a Target Region by Solving Bilinear Semi-Definite Problems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2011. Lecture Notes in Computer Science, vol 6885. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23568-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23568-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23567-2

  • Online ISBN: 978-3-642-23568-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics