Abstract
We present a Retrieval Information system for XML documents using a Machine Learning Ranking approach. This year, we complement the work presented the previous year by enhancing the precision of our machine learning runs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amini, M.R., Usunier, N., Gallinari, P.: Automatic Text Summarization Based on Word-Clusters and Ranking Algorithms. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 142–156. Springer, Heidelberg (2005)
Aslam, J.A., Kanoulas, E., Pavlu, V., Savev, S., Yilmaz, E.: Document selection methodologies for efficient and effective learning-to-rank. In: SIGIR 2009: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 468–475. ACM, New York (2009)
Buffoni, D., Usunier, N., Gallinari, P.: LIP6 at INEX’09: OWPC for Ad Hoc Track. In: Geva, S., Kamps, J., Trotman, A. (eds.) INEX 2009. LNCS, vol. 6203, pp. 59–69. Springer, Heidelberg (2010)
Burges, C.J.C., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions. In: NIPS, pp. 193–200 (2006)
Cao, Y., Xu, J., Liu, T.-Y., Hang, L., Huang, Y., Hon, H.-W.: Adapting ranking SVM to document retrieval. In: Proceedings of the 29th Annual International Conference on Research and Development in Information Retrieval SIGIR 2006 (2006)
Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In: NIPS (1997)
Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. JMLR 4, 933–969 (2003)
Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2002)
Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at trec. In: TREC, pp. 21–30 (1992)
Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A semantically annotated wikipedia xml corpus. In: Kemper, A., Schöning, H., Rose, T., Jarke, M., Seidl, T., Quix, C., Brochhaus, C. (eds.) BTW, LNI, vol. 103, pp. 277–291, GI (2007)
Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)
Usunier, N., Buffoni, D., Gallinari, P.: Ranking with ordered weighted pairwise classification. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.) ICML. ACM International Conference Proceeding Series, vol. 382, p. 133. ACM, New York (2009)
Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics (1988)
Yue, Y., Finley, T., Radlinski, F., Joachims, T.: A support vector method for optimizing average precision. In: SIGIR, pp. 271–278 (2007)
Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Buffoni, D., Usunier, N., Gallinari, P. (2011). LIP6 at INEX’10: OWPC for Ad Hoc Track. In: Geva, S., Kamps, J., Schenkel, R., Trotman, A. (eds) Comparative Evaluation of Focused Retrieval. INEX 2010. Lecture Notes in Computer Science, vol 6932. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23577-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-23577-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23576-4
Online ISBN: 978-3-642-23577-1
eBook Packages: Computer ScienceComputer Science (R0)