Skip to main content

ABSO: Advanced Bee Swarm Optimization Metaheuristic and Application to Weighted MAX-SAT Problem

  • Conference paper
Brain Informatics (BI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6889))

Included in the following conference series:

  • 909 Accesses

Abstract

We introduce an advanced version of Bee Swarm Optimization metaheuristic (BSO) which is inspired from the foraging behavior of real bees. The objective of this work is to enhance the performances of BSO by subdividing the set of variables into groups covering disjointed sub-regions in the search space. To each sub-region is assigned a bee that performs a local search, and the search process is guided by the intensification and diversification principles. The subdivision of the set of variables is strongly dependent on the considered problem and aims at both reducing the execution time and maximizing the coverage of the search space. Our new approach called ABSO for Advanced Bees Swarm Optimization was applied to the weighted MAX-SAT and the comparison of experimental results showed that it outperforms the BSO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wallace, R., Freuder, E.: Comparative studies of constraint satisfaction and Davis-Putnam algorithms for maximum satisfiability problems. In: Johnson, D., Trick, M. (eds.) Cliques, Coloring and Satisfiability, vol. 26, pp. 587–615. American Mathematical Society, Providence (1996)

    Chapter  Google Scholar 

  2. Borchers, B., Furman, J.: A two-phase exact algorithm for MAX-SAT and weighted MAXSAT problems. J. Combi. Opti. 2, 299–306 (1999)

    Article  MATH  Google Scholar 

  3. Alsinet, T., Manyà, F., Planes, J.: Improved branch and bound algorithms for Max-SAT. In: Proceedings of the 6th International Conference on the Theory and Applications of Satisfiability Testing, S. Margherita Ligure, Portofino, Italy (2003)

    Google Scholar 

  4. Xing, Z., Zhang, W.: Efficient strategies for (weighted) maximum satisfiability. In: Proceedings of CP-2004, Toronto, Canada, pp. 690–705 (2004)

    Google Scholar 

  5. Alsinet, A., Manyà, F., Planes, J.: An efficient solver for weighted Max-SAT. Journal of Global Optimization 41(1), 61–73 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. Selman, B., Henry, A., Kautz, Z., Cohen, B.: Local Search Strategies for Satisfiability Testing. Presented at the second DIMACS Challenge on Cliques, Coloring, and Satisfiability (October 1993)

    Google Scholar 

  8. Frank, J.: A study of genetic algorithms to find approximate solutions to hard 3CNF problems. In: Proceedings of Golden West International Conference on Artificial Intelligence (1994)

    Google Scholar 

  9. Mazure, B., Sais, L., Greroire, E.: A Tabu search for Sat. In: Proceedings of AAAI (1997)

    Google Scholar 

  10. Resende, M., Pitsoulis, L., Pardalos, P.: Approximate solutions of weighted MAX-SAT problems using GRASP. In: Du, D.-Z., Gu, J., Pardalos, P. (eds.) Satisfiability Problem: Theory and Applications, pp. 393–405. American Mathematical Society, Providence (1997)

    Chapter  Google Scholar 

  11. Drias, H.: Scatter search with random walk strategy for SAT and MAX-W-SAT problems. In: Monostori, L., Váncza, J., Ali, M. (eds.) IEA/AIE 2001. LNCS (LNAI), vol. 2070, pp. 35–44. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Drias, H., Taibi, A., Zekour, S.: Cooperative Ant Colonies for Solving the Maximum Weighted Satisfiability Problem. Springer, Heidelberg (2003)

    Book  Google Scholar 

  13. Boughaci, D., Drias, H.: Solving Weighted Max-Sat Optimization Problems Using a Taboo Scatter Search Meta-heuristic. In: Proceedings of ACM SAC 2004, pp. 35–36 (2004)

    Google Scholar 

  14. Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Von Frisch, K., Lindauer, M.: The “language” and orientation of the honey bee. Annu. Rev. Entomol. 1, 45–58 (1956)

    Article  Google Scholar 

  16. Seeley, T.: Honeybee ecology: a study of adaptation in social life. Princeton University Press, Princeton (1985)

    Book  Google Scholar 

  17. Johnson, D.S.: Approximate Algorithmic for combinatorial Problems. Journal of Computer and System Sciences, 256–278 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sadeg, S., Drias, H., Ait El Hara, O., Kaci, A. (2011). ABSO: Advanced Bee Swarm Optimization Metaheuristic and Application to Weighted MAX-SAT Problem. In: Hu, B., Liu, J., Chen, L., Zhong, N. (eds) Brain Informatics. BI 2011. Lecture Notes in Computer Science(), vol 6889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23605-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23605-1_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23604-4

  • Online ISBN: 978-3-642-23605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics