Skip to main content

Die Free or Live Hard? Empirical Evaluation and New Design for Fighting Evolving Twitter Spammers

  • Conference paper
Recent Advances in Intrusion Detection (RAID 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6961))

Included in the following conference series:

Abstract

Due to the significance and indispensability of detecting and suspending Twitter spammers, many researchers along with the engineers in Twitter Corporation have devoted themselves to keeping Twitter as spam-free online communities. Meanwhile, Twitter spammers are also evolving to evade existing detection techniques. In this paper, we make an empirical analysis of the evasion tactics utilized by Twitter spammers, and then design several new and robust features to detect Twitter spammers. Finally, we formalize the robustness of 24 detection features that are commonly utilized in the literature as well as our proposed ones. Through our experiments, we show that our new designed features are effective to detect Twitter spammers, achieving a much higher detection rate than three state-of-the-art approaches [35,32,34] while keeping an even lower false positive rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A new look at spam by the numbers, http://scitech.blogs.cnn.com/

  2. Acai Berry spammers hack Twitter accounts to spread adverts, http://www.sophos.com/blogs/gc/g/2009/05/24/acai-berry-spammers-hack-twitter-accounts-spread-adverts/

  3. Auto Twitter, http://www.autotweeter.in/

  4. Betweenness Centrality, http://en.wikipedia.org/wiki/Centrality

  5. Botnet over Twitter, http://compsci.ca/blog/

  6. Buy a follower, http://buyafollower.com/

  7. Capture HPC, https://projects.honeynet.org/capture-hpc

  8. F-measure, http://en.wikipedia.org/wiki/F1_score

  9. Google Safe Browsing API, http://code.google.com/apis/safebrowsing/

  10. Local Clustering Coefficient, http://wikipedia.org/wiki/Clustering_coefficient#Local_clustering_coefficienty

  11. Low-Priced Twitter Spam Kit Sold on Underground Forums, http://news.softpedia.com/news/Low-Priced-Twitter-Spam-Kit-Sold-on-Underground-Forums-146160.shtml

  12. New Koobface campaign spreading on Facebook, http://community.websense.com/blogs/securitylabs/archive/2011/01/14/new-koobface-campaign-spreading-on-facebook.aspx

  13. The 2000 Following Limit Policy On Twitter, http://twittnotes.com/2009/03/2000-following-limit-on-twitter.html

  14. The Twitter Rules, http://help.twitter.com/entries/18311-the-twitter-rules

  15. Tweet spinning your way to the top, http://blog.spinbot.com/2011/03/tweet-spinning-your-way-to-the-top/

  16. TweetDeck, http://www.tweetdeck.com/

  17. Twitter account for sale, http://www.potpiegirl.com/2008/04/buy-sell-twitter-account/

  18. Twitter API in Wikipedia, http://apiwiki.twitter.com/

  19. Twitter phishing hack hits BBC, Guardian and cabinet minister, http://www.guardian.co.uk/technology/2010/feb/26/twitter-hack-spread-phishing

  20. Twitter Public Timeline, http://twitter.com/public_timeline

  21. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of intrusion detection. In: Proceedings of the 6th ACM Conference on Computer and Communications Security, pp. 1–7 (1999)

    Google Scholar 

  22. Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting Spammers on Twitter. In: Collaboration, Electronic messaging, Anti-Abuse and Spam Confference, CEAS (2010)

    Google Scholar 

  23. Benevenuto, F., Rodrigues, T., Almeida, V., Almeida, J., Gonalves, M.: Detecting Spammers and Content Promoters in Online Video Social Networks. In: ACM SIGIR Conference, SIGIR (2009)

    Google Scholar 

  24. Benevenuto, F., Rodrigues, T., Almeida, V., Almeida, J., Zhang, C., Ross, K.: Identifying Video Spammers in Online Social Networks. In: Int’l Workshop on Adversarial Information Retrieval on the Web, AirWeb 2008 (2008)

    Google Scholar 

  25. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring User Influence in Twitter: The Million Follower Fallacy. In: Int’l AAAI Conference on Weblogs and Social Media, ICWSM (2010)

    Google Scholar 

  26. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is Tweeting on Twitter: Human, Bot, or Cyborg?. In: Annual Computer Security Applications Conference, ACSAC 2010 (2010)

    Google Scholar 

  27. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.: Detecting and Characterizing Social Spam Campaigns. In: Proceedings of ACM SIGCOMM IMC, IMC 2010 (2010)

    Google Scholar 

  28. Griery, C., Thomas, K., Paxsony, V., Zhangy, M.: @spam: The Underground on 140 Characters or Less. In: ACM Conference on Computer and Communications Security, CCS (2010)

    Google Scholar 

  29. Ionescu, D.: Twitter Warns of New Phishing Scam, http://www.pcworld.com/article/174660/twitter_warns_of_new_phishing_scam.html

  30. Koutrika, G., Effendi, F., Gyongyi, Z., Heymann, P., Garcia-Molina, H.: Combating spam in tagging systems. In: Int’l Workshop on Adversarial Information Retrieval on the Web, AIRWeb 2007 (2007)

    Google Scholar 

  31. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a Social Network or a News Media?. In: Int’l World Wide Web, WWW 2010 (2010)

    Google Scholar 

  32. Lee, K., Caverlee, J., Webb, S.: Uncovering Social Spammers: Social Honeypots + Machine Learning. In: ACM SIGIR Conference, SIGIR (2010)

    Google Scholar 

  33. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, SIGKDD (2006)

    Google Scholar 

  34. Stringhini, G., Barbara, S., Kruegel, C., Vigna, G.: Detecting Spammers On Social Networks. In: Annual Computer Security Applications Conference, ACSAC 2010 (2010)

    Google Scholar 

  35. Wang, A.: Don’t follow me: spam detecting in Twitter. In: Int’l Conferene on Security and Cryptography, SECRYPT (2010)

    Google Scholar 

  36. Yang, C., Harkreader, R., Gu, G.: Die free or live hard? empirical evaluation and new design for fighting evolving twitter spammers (extended version). Technical report (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robin Sommer Davide Balzarotti Gregor Maier

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Harkreader, R.C., Gu, G. (2011). Die Free or Live Hard? Empirical Evaluation and New Design for Fighting Evolving Twitter Spammers. In: Sommer, R., Balzarotti, D., Maier, G. (eds) Recent Advances in Intrusion Detection. RAID 2011. Lecture Notes in Computer Science, vol 6961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23644-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23644-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23643-3

  • Online ISBN: 978-3-642-23644-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics