Skip to main content

User-Steered Image Segmentation Using Live Markers

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Abstract

Interactive image segmentation methods have been proposed based on region constraints (user-drawn markers) and boundary constraints (anchor points). However, they have complementary strengths and weaknesses, which can be addressed to further reduce user involvement. We achieve this goal by combining two popular methods in the Image Foresting Transform (IFT) framework, the differential IFT with optimum seed competition (DIFT-SC) and live-wire-on-the-fly (LWOF), resulting in a new method called Live Markers (LM). DIFT-SC can cope with complex object silhouettes, but presents a leaking problem on weaker parts of the boundary. LWOF provides smoother segmentations and blocks the DIFT-SC leaking, but requires more user interaction. LM combines their strengths and eliminates their weaknesses at the same time, by transforming optimum boundary segments from LWOF into internal and external markers for DIFT-SC. This hybrid approach allows linear-time execution in the first interaction and sublinear-time corrections in the subsequent ones. We demonstrate its ability to reduce user involvement with respect to LWOF and DIFT-SC using several natural and medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., Lotufo, R.A.: User-steered image segmentation paradigms: Live-wire and live-lane. Graphical Models and Image Processing 60, 233–260 (1998)

    Article  Google Scholar 

  2. Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graphical Models and Image Processing 60, 349–384 (1998)

    Article  MATH  Google Scholar 

  3. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Intl. Journal of Computer Vision 70, 109–131 (2006)

    Article  Google Scholar 

  4. Falcão, A.X., Bergo, F.P.G.: Interactive volume segmentation with differential image foresting transforms. IEEE Trans. on Medical Imaging 23, 1100–1108 (2004)

    Article  Google Scholar 

  5. Bai, X., Sapiro, G.: Geodesic matting: A framework for fast interactive image and video segmentation and matting. Intl. Journal of Computer Vision 82, 113–132 (2009)

    Article  Google Scholar 

  6. Miranda, P.A.V., Falcão, A.X., Udupa, J.K.: Synergistic arc-weight estimation for interactive image segmentation using graphs. Computer Vision and Image Understanding 114, 85–99 (2010), doi:10.1016/j.cviu.2009.08.001.

    Article  Google Scholar 

  7. Yang, W., Cai, J., Zheng, J., Luo, J.: User-friendly interactive image segmentation through unified combinatorial user inputs. IEEE Trans. on Image Processing 19, 2470–2479 (2010)

    Article  MathSciNet  Google Scholar 

  8. Martelli, A.: Edge detection using heuristic search methods. Computer Graphics and Image Processing 1, 169–182 (1972)

    Article  Google Scholar 

  9. Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: Live-wire-on-the-fly. IEEE Trans. on Medical Imaging 19, 55–62 (2000)

    Article  Google Scholar 

  10. Malmberg, F., Vidholm, E., Nystrom, I.: A 3D live-wire segmentation method for volume images using haptic interaction. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 663–673. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Liu, J., Udupa, J.: Oriented active shape models. IEEE Trans. on Medical Imaging 28, 571–584 (2009)

    Article  Google Scholar 

  12. Audigier, R., Lotufo, R.: Watershed by image foresting transform, tie-zone, and theoretical relationship with other watershed definitions. In: Proceedings of the 8th Intl. Symposium on Mathematical Morphology and its Applications to Signal and Image Processing (ISMM), Rio de Janeiro, Brazil, MCT/INPE, pp. 277–288 (2007)

    Google Scholar 

  13. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: Thinnings, shortest path forests, and topological watersheds. IEEE Trans. on Pattern Analysis and Machine Intelligence 32, 925–939 (2010)

    Article  Google Scholar 

  14. Udupa, J., Saha, P., Lotufo, R.: Relative fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 1485–1500 (2002)

    Article  Google Scholar 

  15. Ciesielski, K.C., Udupa, J.K., Falcão, A.X., Miranda, P.A.V.: Fuzzy connectedness and graph cut image segmentation: similarities and differences. In: Proceedings of SPIE on Medical Imaging: Image Processing (to appear, 2011)

    Google Scholar 

  16. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: Interactive foreground extraction using iterated graph cuts. ACM Trans. on Graphics 23, 309–314 (2004)

    Article  Google Scholar 

  17. Miranda, P.A.V., Falcão, A.X.: Links between image segmentation based on optimum-path forest and minimum cut in graph. Journal of Mathematical Imaging and Vision 35, 128–142 (2009), doi:10.1007/s10851-009-0159-9.

    Article  MathSciNet  Google Scholar 

  18. Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 19–29 (2004)

    Article  Google Scholar 

  19. Miranda, P.A.V., Falcão, A.X., Spina, T.V.: The Riverbed approach for user-steered image segmentation. In: 18th International Conference on Image Processing (ICIP), Brussels, Belgium (to appear, 2011)

    Google Scholar 

  20. Spina, T.V., Falcão, A.X.: Intelligent understanding of user input applied to arc-weight estimation for graph-based foreground segmentation. In: Proceedings of the XXIII Conference on Graphics, Patterns and Images (SIBGRAPI), Gramado, Brazil. IEEE, Los Alamitos (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vallin Spina, T., Falcão, A.X., Vechiatto Miranda, P.A. (2011). User-Steered Image Segmentation Using Live Markers. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics