Abstract
In this paper, the multiple random subset-kernel learning (MRSKL) algorithm is proposed. In MRSKL, a subset of training samples is randomly selected for each kernel with randomly set parameters, and the kernels with optimal weights are combined for classification. A linear support vector machine (SVM) is adopted to determine the optimal kernel weights; therefore, MRSKL is based on a hierarchical SVM. MRSKL outperforms a single SVM even when using a small number of samples (200 to 400 out of 20,000 training samples), while the SVM requires more than 4,000 support vectors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple Kernel Learning, Conic Duality, and the SMO algorithm. In: Proc. International Conf. on Machine Learning, pp. 41–48 (2004)
Sonnnenburg, S., Röotsch, G., Schäfer, C., Schöolkopf, B.: Large Scale Multiple Kernel Learning. J. of Machine Learning Research 7, 1531–1565 (2006)
Lanckriet, G.R.G., Cristiani, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. J. of Machine Learning Research 5, 27–72 (2004)
Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.: More Efficiency in Multiple Kernel Learning. In: Proc. of International Conf. on Machine Learning (2007)
Göonen, M., Alpaydin, E.: Localized Multiple Kernel Learning. In: Proc. if International Conf. on Machine Kearning (2008)
Baudat, G.: Feature vector selection and projection using kernels. NeuroComputing 55(1), 21–38 (2003)
Zhu, J., Hastie, T.: Kernel Logistic Regression and the Import Vector Machine. J. of Computational and Graphical Statistics 14(1), 185–205 (2005)
Oosugi, Y., Uehara, K.: Constructing a Minimal Instance-base by Storing Prototype Instances. J. of Information Processing 39(11), 2949–2959 (1998) (in Japanese)
Nishida, K., Kurita, T.: RANSAC-SVM for Large-Scale Datasets. In: Proc. ICPR 2008 (CD-ROM) (December 2008)
Chang, C.C., Lin, C.J.: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#cod-rna
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nishida, K., Fujiki, J., Kurita, T. (2011). Multiple Random Subset-Kernel Learning. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_42
Download citation
DOI: https://doi.org/10.1007/978-3-642-23672-3_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23671-6
Online ISBN: 978-3-642-23672-3
eBook Packages: Computer ScienceComputer Science (R0)