Abstract
In this paper we propose to enhance the training data of boosting-based object detection frameworks by the use of principal component analysis (PCA). The quality of boosted classifiers highly depends on the image databases exploited in training. We observed that negative training images projected into the objects PCA space are often far away from the object class. This broad boundary between the object classes in training can yield to a high classification error of the boosted classifier in the testing phase. We show that transforming the negative training database close to the positive object class can increase the detection performance. In experiments on face detection and the analysis of microscopic cell images, our method decreases the amount of false positives while maintaining a high detection rate. We implemented our approach in a Viola & Jones object detection framework using AdaBoost to combine Haar-like features. But as a preprocessing step our method can easily be integrated in all boosting-based frameworks without additional overhead.
This work has been partially funded by the DFG within the excellence cluster REBIRTH.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ali, S., Shah, M.: An integrated approach for generic object detection using kernel pca and boosting. In: ICME, pp. 1030–1033 (2005)
Bartlett, M., Movellan, J., Sejnowski, T.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464 (2002)
Baumann, F., Ernst, K., Ehlers, A., Rosenhahn, B.: Symmetry enhanced adaboost. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 286–295. Springer, Heidelberg (2010)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH 1999: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999)
Crowther, P.S., Cox, R.J.: A method for optimal division of data sets for use in neural networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 1–7. Springer, Heidelberg (2005)
Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)
Homepage, F.D.: (2010), http://www.facedetection.com/
Leistner, C., Grabner, H., Bischof, H.: Semi-supervised boosting using visual similarity learning. In: CVPR (2008)
Li, H., Shen, C.: Boosting the minimum margin: Lpboost vs. adaboost. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, DICTA, pp. 533–539 (2008)
Schapire, R.E., Freund, Y., Barlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. In: Proceedings of the Fourteenth International Conference on Machine Learning (ICML), pp. 322–330 (1997)
Schölkopf, B., Mika, S., Smola, A., Rätsch, G., Müller, K.R.: Kernel pca pattern reconstruction via approximate pre-images. In: Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing, pp. 147–152. Springer, Heidelberg (1998)
Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591. IEEE Computer Society, Los Alamitos (1991)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Viola, P., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. Advances in Neural Information Processing 18, 1417–1426 (2007)
Warmuth, M.K., Glocer, K., Raetsch, G.: Boosting algorithms for maximizing the soft margin. Advances in Neural Information Processing Systems 20, 1585–1592 (2008)
Warmuth, M.K., Glocer, K.A., Vishwanathan, S.: Entropy regularized lpboost. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 256–271. Springer, Heidelberg (2008)
Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 34–58 (2002)
Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Microsoft Research Technical Report, MSR-TR-2010-66 (2010)
Zhang, D., Li, S.Z., Gatica-Perez, D.: Real-time face detection using boosting in hierarchical feature spaces. In: ICPR, vol. (2), pp. 411–414 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ehlers, A., Baumann, F., Spindler, R., Glasmacher, B., Rosenhahn, B. (2011). PCA Enhanced Training Data for Adaboost. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-23672-3_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23671-6
Online ISBN: 978-3-642-23672-3
eBook Packages: Computer ScienceComputer Science (R0)