Skip to main content

PCA Enhanced Training Data for Adaboost

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Included in the following conference series:

  • 1949 Accesses

Abstract

In this paper we propose to enhance the training data of boosting-based object detection frameworks by the use of principal component analysis (PCA). The quality of boosted classifiers highly depends on the image databases exploited in training. We observed that negative training images projected into the objects PCA space are often far away from the object class. This broad boundary between the object classes in training can yield to a high classification error of the boosted classifier in the testing phase. We show that transforming the negative training database close to the positive object class can increase the detection performance. In experiments on face detection and the analysis of microscopic cell images, our method decreases the amount of false positives while maintaining a high detection rate. We implemented our approach in a Viola & Jones object detection framework using AdaBoost to combine Haar-like features. But as a preprocessing step our method can easily be integrated in all boosting-based frameworks without additional overhead.

This work has been partially funded by the DFG within the excellence cluster REBIRTH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ali, S., Shah, M.: An integrated approach for generic object detection using kernel pca and boosting. In: ICME, pp. 1030–1033 (2005)

    Google Scholar 

  2. Bartlett, M., Movellan, J., Sejnowski, T.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464 (2002)

    Article  Google Scholar 

  3. Baumann, F., Ernst, K., Ehlers, A., Rosenhahn, B.: Symmetry enhanced adaboost. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 286–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: SIGGRAPH 1999: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999)

    Google Scholar 

  5. Crowther, P.S., Cox, R.J.: A method for optimal division of data sets for use in neural networks. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3684, pp. 1–7. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)

    Google Scholar 

  7. Homepage, F.D.: (2010), http://www.facedetection.com/

  8. Leistner, C., Grabner, H., Bischof, H.: Semi-supervised boosting using visual similarity learning. In: CVPR (2008)

    Google Scholar 

  9. Li, H., Shen, C.: Boosting the minimum margin: Lpboost vs. adaboost. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, DICTA, pp. 533–539 (2008)

    Google Scholar 

  10. Schapire, R.E., Freund, Y., Barlett, P., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. In: Proceedings of the Fourteenth International Conference on Machine Learning (ICML), pp. 322–330 (1997)

    Google Scholar 

  11. Schölkopf, B., Mika, S., Smola, A., Rätsch, G., Müller, K.R.: Kernel pca pattern reconstruction via approximate pre-images. In: Proceedings of the 8th International Conference on Artificial Neural Networks, Perspectives in Neural Computing, pp. 147–152. Springer, Heidelberg (1998)

    Google Scholar 

  12. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  13. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  14. Viola, P., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. Advances in Neural Information Processing 18, 1417–1426 (2007)

    Google Scholar 

  15. Warmuth, M.K., Glocer, K., Raetsch, G.: Boosting algorithms for maximizing the soft margin. Advances in Neural Information Processing Systems 20, 1585–1592 (2008)

    Google Scholar 

  16. Warmuth, M.K., Glocer, K.A., Vishwanathan, S.: Entropy regularized lpboost. In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS (LNAI), vol. 5254, pp. 256–271. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 34–58 (2002)

    Article  Google Scholar 

  18. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Microsoft Research Technical Report, MSR-TR-2010-66 (2010)

    Google Scholar 

  19. Zhang, D., Li, S.Z., Gatica-Perez, D.: Real-time face detection using boosting in hierarchical feature spaces. In: ICPR, vol. (2), pp. 411–414 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ehlers, A., Baumann, F., Spindler, R., Glasmacher, B., Rosenhahn, B. (2011). PCA Enhanced Training Data for Adaboost. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics