Skip to main content

A Method for Identification and Visualization of Histological Image Structures Relevant to the Cancer Patient Conditions

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Included in the following conference series:

Abstract

A method is suggested for identification and visualization of histology image structures relevant to the key characteristics of the state of cancer patients. The method is based on a multi-step procedure which includes calculating image descriptors, extracting their principal components, correlating them to known object properties and mapping disclosed regularities all the way back up to the corresponding image structures they found to be linked with. Image descriptors employed are extended 4D color co-occurrence matrices counting the occurrence of all possible pixel triplets located at the vertices of equilateral triangles of different size. The method is demonstrated on a sample of 952 histology images taken from 68 women with clinically confirmed diagnosis of ovarian cancer. As a result, a number of associations between the patients’ conditions and morphological image structures were found including both easily explainable and the ones whose biological substrate remains obscured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schwab, M.: Encyclopedia of Cancer, 2nd edn., 4 volumes, 3235p. Springer, Heidelberg (2009)

    Book  Google Scholar 

  2. Hayat, M.A.: Methods of Cancer Diagnosis, Therapy and Prognosis, 6 volumes. Springer, Heidelberg (2009/2010)

    Google Scholar 

  3. Wootton, R., Springall, D., Polak, J.: Image Analysis in Histology: Conventional and Confocal Microscopy, 425p. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  4. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering (1), 147–171 (2009)

    Google Scholar 

  5. Sertel, O., Kong, J., Catalyurek, U., Lozanski, G., Saltz, J., Gurcan, M.: Histopathological image analysis using model-based intermediate representations and color texture: Follicular lymphoma grading. Journal of Signal Processing Systems 55(1), 169–183 (2009)

    Article  Google Scholar 

  6. Yu, F., Ip, H.: Semantic content analysis and annotation of histological images. Computers in Biology and Medicine 38(6), 635–649 (2008)

    Article  Google Scholar 

  7. Rojo, M.G., Garcia, G.B., Mateos, C.P., Garcia, J.G., Vicente, M.C.: Critical comparison of 31 commercially available digital slide systems in pathology. International Journal of Surgical Pathology 14(4), 285–305 (2006)

    Article  Google Scholar 

  8. Stack, M.S., Fishman, D.A.: Ovarian Cancer, 2nd edn. Cancer Treatment and Research, 409p. Springer, New York (2009)

    Google Scholar 

  9. Bamberger, E., Perrett, C.: Angiogenesis in epithelian ovarian cancer (review). Molecular Pathology 55, 348–359 (2002)

    Article  Google Scholar 

  10. Sprindzuk, M., Dmitruk, A., Kovalev, V., Bogush, A., Tuzikov, A., Liakhovski, V., Fridman, M.: Computer-aided image processing of angiogenic histological samples in ovarian cancer. Journal of Clinical Medicine Research 1(5), 249–261 (2009)

    Google Scholar 

  11. Folkman, J.: What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute 82(1), 4–6 (1990)

    Article  Google Scholar 

  12. Hsu, W., Lee, M., Zhang, J.: Image mining: Trends and developments. Journal of Intelligent Information Systems 19(1), 7–23 (2002)

    Article  Google Scholar 

  13. Herold, J., Loyek, C., Nattkemper, T.W.: Multivariate image mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(1), 2–13 (2011)

    Google Scholar 

  14. Perner, P.: Image mining: Issues, framework, a generic tool and its application to medical image diagnosis. Engineering Applications of Artificial Intelligence 15(2), 205–216 (2002)

    Article  Google Scholar 

  15. Chen, W., Meerc, P., Georgescud, B., He, W., Goodellb, L.A., Forana, D.J.: Image mining for investigative pathology using optimized feature extraction and data fusion. Computer Methods and Programs in Biomedicine 79, 59–72 (2005)

    Article  Google Scholar 

  16. Kovalev, V., Prus, A., Vankevich, P.: Mining lung shape from x-ray images. In: Perner, P. (ed.) MLDM 2009. LNCS, vol. 5632, pp. 554–568. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Kovalev, V., Safonau, I., Prus, A.: Histological image mining for exploring textural differences in cancerous tissue. In: Swedish Symposium on Image Analysis (SSBA 2010), March 11-12, pp. 113–116. Uppsala University, Uppsala (2010)

    Google Scholar 

  18. Huang, J., Kumar, R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 762–768. IEEE Comp. Soc. Press, Los Alamitos (1997)

    Google Scholar 

  19. Kovalev, V., Volmer, S.: Color co-occurrence descriptors for querying-by-example. In: Int. Conf. on Multimedia Modelling, Lausanne, Switzerland, Lausanne, Switzerland, pp. 32–38. IEEE Comp. Soc. Press, Los Alamitos (1998)

    Google Scholar 

  20. Julesz, B.: Foundations of Cyclopean Perception, p. 426. The MIT Press, Cambridge (2006)

    Google Scholar 

  21. Beason-Held, L.L., Purpura, K.P., Krasuski, J.S., et al.: Cortical regions involved in visual texture perception: a fMRI study. Cognitive Brain Research 7, 111–118 (1998)

    Article  Google Scholar 

  22. Petrou, M., Kovalev, V., Reichenbach, J.: Three-dimensional nonlinear invisible boundary detection. IEEE Trans. Image Processing 15(10), 3020–3032 (2006)

    Article  Google Scholar 

  23. Kovalev, V., Petrou, M., Suckling, J.: Detection of structural differences between the brains of schizophrenic patients and controls. Psychiatry Research: Neuroimaging 124, 177–189 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kovalev, V., Dmitruk, A., Safonau, I., Frydman, M., Shelkovich, S. (2011). A Method for Identification and Visualization of Histological Image Structures Relevant to the Cancer Patient Conditions. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics