Skip to main content

A Diffeomorphic Matching Based Characterization of the Pelvic Organ Dynamics

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6854))

Included in the following conference series:

  • 1899 Accesses

Abstract

The analysis of the behavior of the pelvic organs on dynamic mri sequences could help to a better understanding of pelvic floor pathophysiology. The main pelvic organs (bladder, uterus-vagina, rectum) are soft-tissue organs, they undergo deformations and displacements under an abdominal strain. Moreover, the inter-patient morphological variabilities of these organs are very important. In this paper, we present a methodology for the analysis of the pelvic organ dynamics based on a diffeormorphic matching method called large deformation diffeomorphic metric mapping. It allows to define a unique contour parametrization of the pelvic organs, and to estimate the organ deformations after matching the organ shape against its initial state (\(t\!=\!0\)). Some promising results are presented, where the pathology detection capability of the deformation features is analyzed through an inter-patient analysis. Also, an organ parcellation is proposed by performing a local deformation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fielding, J.R.: Mr imaging of pelvic floor relaxation. Radiologic Clinics of North America 41(4), 747–756 (2003)

    Article  Google Scholar 

  2. Seynaeve, R., Billiet, I., Vossaert, P., Verleyen, P., Steegmans, A.: MR imaging of the pelvic floor. JBR-BTR 89(4), 182–189 (2006)

    Google Scholar 

  3. Weber, A.M., Richter, H.E.: Pelvic organ prolapse. Obstetrics and Gynecology 106(3), 615–634 (2005)

    Article  Google Scholar 

  4. Rahim, M., Bellemare, M.E., Pirró, N., Bulot, R.: A shape descriptors comparison for organs deformation sequence characterization in mri sequences. In: IEEE International Conference on Image Processing, ICIP 2009, pp. 1069–1072 (2009)

    Google Scholar 

  5. Glaunes, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. Journal of Computer Vision 80(3), 317–336 (2008)

    Article  Google Scholar 

  6. Auzias, G., Glaunès, J., Cachia, A., Cathier, P., Bardinet, E., Colliot, O., Mangin, J., Trouve, A., Baillet, S.: Multi-scale diffeomorphic cortical registration under manifold sulcal constraints. In: IEEE International Symposium on Biomedical Imaging–ISBI 2008, pp. 1127–1130 (2008)

    Google Scholar 

  7. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5761, pp. 297–304. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Beg, M., Khan, A.: Computing an average anatomical atlas using LDDMM and geodesic shooting. In: IEEE International Symposium on Biomedical Imaging–ISBI 2006, pp. 1116–1119 (2006)

    Google Scholar 

  9. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellemare, M.E., Pirró, N., Marsac, L., Durieux, O.: Toward the simulation of the strain of female pelvic organs. In: IEEE EMBS Annual International Conference, pp. 2756–2759 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rahim, M., Bellemare, ME., Pirró, N., Bulot, R. (2011). A Diffeomorphic Matching Based Characterization of the Pelvic Organ Dynamics. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6854. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23672-3_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23672-3_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23671-6

  • Online ISBN: 978-3-642-23672-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics