Skip to main content

Statistical Tuning of Adaptive-Weight Depth Map Algorithm

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6855))

Included in the following conference series:

Abstract

In depth map generation, the settings of the algorithm parameters to yield an accurate disparity estimation are usually chosen empirically or based on unplanned experiments. A systematic statistical approach including classical and exploratory data analyses on over 14000 images to measure the relative influence of the parameters allows their tuning based on the number of bad_pixels. Our approach is systematic in the sense that the heuristics used for parameter tuning are supported by formal statistical methods. The implemented methodology improves the performance of dense depth map algorithms. As a result of the statistical based tuning, the algorithm improves from 16.78% to 14.48% bad_pixels rising 7 spots as per the Middlebury Stereo Evaluation Ranking Table. The performance is measured based on the distance of the algorithm results vs. the Ground Truth by Middlebury. Future work aims to achieve the tuning by using significantly smaller data sets on fractional factorial and surface-response designs of experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision 47(1-3), 7–42 (2002)

    Article  MATH  Google Scholar 

  2. Gong, M., Yang, R., Wang, L., Gong, M.: A performance study on different cost aggregation approaches used in real-time stereo matching. Int. J. Comput. Vision 75, 283–296 (2007)

    Article  Google Scholar 

  3. Yoon, K., Kweon, I.: Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 650 (2006)

    Article  Google Scholar 

  4. Congote, J., Barandiaran, I., Barandiaran, J., Montserrat, T., Quelen, J., Ferrán, C., Mindan, P., Mur, O., Tarrés, F., Ruiz, O.: Real-time depth map generation architecture for 3d videoconferencing. In: 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), 2010, pp. 1–4 (2010)

    Google Scholar 

  5. Gu, Z., Su, X., Liu, Y., Zhang, Q.: Local stereo matching with adaptive support-weight, rank transform and disparity calibration. Pattern Recogn. Lett. 29, 1230–1235 (2008)

    Article  Google Scholar 

  6. Hosni, A., Bleyer, M., Gelautz, M., Rhemann, C.: Local stereo matching using geodesic support weights. In: Proceedings of the 16th IEEE Int. Conf. on Image Processing (ICIP), pp. 2093–2096 (2009)

    Google Scholar 

  7. Wang, L., Gong, M., Gong, M., Yang, R.: How far can we go with local optimization in real-time stereo matching. In: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2006), pp. 129–136 (2006)

    Google Scholar 

  8. Fua, P.: A parallel stereo algorithm that produces dense depth maps and preserves image features. Machine Vision and Applications 6(1), 35–49 (1993)

    Article  Google Scholar 

  9. Weiss, B.: Fast median and bilateral filtering. ACM Trans. Graph. 25, 519–526 (2006)

    Article  Google Scholar 

  10. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202 (2003)

    Google Scholar 

  11. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  12. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  13. Tombari, F., Mattoccia, S., Di Stefano, L., Addimanda, E.: Classification and evaluation of cost aggregation methods for stereo correspondence. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoyos, A., Congote, J., Barandiaran, I., Acosta, D., Ruiz, O. (2011). Statistical Tuning of Adaptive-Weight Depth Map Algorithm. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23678-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23678-5_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23677-8

  • Online ISBN: 978-3-642-23678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics