Skip to main content

Nonparametric Estimation of Fisher Vectors to Aggregate Image Descriptors

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6915))

  • 2222 Accesses

Abstract

We investigate how to represent a natural image in order to be able to recognize the visual concepts within it. The core of the proposed method consists in a new approach to aggregate local features, based on a non-parametric estimation of the Fisher vector, that result from the derivation of the gradient of the loglikelihood. For this, we need to use low level local descriptors that are learned with independent component analysis and thus provide a statistically independent description of the images. The resulting signature has a very intuitive interpretation and we propose an efficient implementation as well. We show on publicly available datasets that the proposed image signature performs very well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boureau, Y., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR, San Francisco, USA (2010)

    Google Scholar 

  2. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Deselaers, T., Deserno, T.: The visual concept detection task in imageclef 2008. In: ImageCLEF Workshop (2008)

    Google Scholar 

  4. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  5. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)

    Article  Google Scholar 

  6. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience, Hoboken (2001)

    Book  Google Scholar 

  7. Jaakola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: NIPS, pp. 1–8 (1999)

    Google Scholar 

  8. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR, San Francisco, USA (June 2010)

    Google Scholar 

  9. Kooperberg, C., Stone, C.J.: Logspline density estimation for censored data. Journal of Computational and Graphical Statistics 1, 301–328 (1997)

    Google Scholar 

  10. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, Washington, DC, USA, pp. 2169–2178 (2006)

    Google Scholar 

  11. Le Borgne, H., Guérin Dugué, A., Antoniadis, A.: Representation of images for classification with independent features. Pattern Recognition Letters 25(2), 141–154 (2004)

    Article  Google Scholar 

  12. Le Borgne, H., Honnorat, N.: Fast shared boosting for large-scale concept detection. Multimedia Tools and Applications (2010)

    Google Scholar 

  13. Liu, J., Shah, M.: Scene modeling using co-clustering. In: ICCV (2007)

    Google Scholar 

  14. Lowe, D.G.: Object recognition from local scale-invariant features. In: CVPR 1999, Los Alamitos, CA, USA, vol. 2, pp. 1150–1157 (August 1999)

    Google Scholar 

  15. Masnadi-Shirazi, H., Mahadevan, V., Vasconcelos, N.: On the design of robust classifiers for computer vision. In: CVPR, San Francisco, USA, pp. 779–786 (June 2010)

    Google Scholar 

  16. Perronnin, F., Dance, C.R.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)

    Google Scholar 

  17. Perronnin, F., Dance, C.R.: Large-scale image retrieval with compressed fisher kernels. In: CVPR, San Francisco, USA, pp. 3384–3391 (2010)

    Google Scholar 

  18. Rasiwasia, N., Vasconcelos, N.: Holistic context modeling using semantic co-occurrences. In: CVPR, Los Alamitos, CA, USA, pp. 1889–1895 (2009)

    Google Scholar 

  19. Rasiwasia, N., Vasconcelos, N.: Scene classification with low-dimensional semantic spaces and weak supervision. In: CVPR, pp. 1–6 (2008)

    Google Scholar 

  20. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV, vol. 2, pp. 1470–1477 (2003)

    Google Scholar 

  21. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Borgne, H., Fuentes, P.M. (2011). Nonparametric Estimation of Fisher Vectors to Aggregate Image Descriptors. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics