Abstract
We investigate how to represent a natural image in order to be able to recognize the visual concepts within it. The core of the proposed method consists in a new approach to aggregate local features, based on a non-parametric estimation of the Fisher vector, that result from the derivation of the gradient of the loglikelihood. For this, we need to use low level local descriptors that are learned with independent component analysis and thus provide a statistically independent description of the images. The resulting signature has a very intuitive interpretation and we propose an efficient implementation as well. We show on publicly available datasets that the proposed image signature performs very well.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boureau, Y., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR, San Francisco, USA (2010)
Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)
Deselaers, T., Deserno, T.: The visual concept detection task in imageclef 2008. In: ImageCLEF Workshop (2008)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)
van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley-Interscience, Hoboken (2001)
Jaakola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: NIPS, pp. 1–8 (1999)
Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: CVPR, San Francisco, USA (June 2010)
Kooperberg, C., Stone, C.J.: Logspline density estimation for censored data. Journal of Computational and Graphical Statistics 1, 301–328 (1997)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, Washington, DC, USA, pp. 2169–2178 (2006)
Le Borgne, H., Guérin Dugué, A., Antoniadis, A.: Representation of images for classification with independent features. Pattern Recognition Letters 25(2), 141–154 (2004)
Le Borgne, H., Honnorat, N.: Fast shared boosting for large-scale concept detection. Multimedia Tools and Applications (2010)
Liu, J., Shah, M.: Scene modeling using co-clustering. In: ICCV (2007)
Lowe, D.G.: Object recognition from local scale-invariant features. In: CVPR 1999, Los Alamitos, CA, USA, vol. 2, pp. 1150–1157 (August 1999)
Masnadi-Shirazi, H., Mahadevan, V., Vasconcelos, N.: On the design of robust classifiers for computer vision. In: CVPR, San Francisco, USA, pp. 779–786 (June 2010)
Perronnin, F., Dance, C.R.: Fisher kernels on visual vocabularies for image categorization. In: CVPR (2007)
Perronnin, F., Dance, C.R.: Large-scale image retrieval with compressed fisher kernels. In: CVPR, San Francisco, USA, pp. 3384–3391 (2010)
Rasiwasia, N., Vasconcelos, N.: Holistic context modeling using semantic co-occurrences. In: CVPR, Los Alamitos, CA, USA, pp. 1889–1895 (2009)
Rasiwasia, N., Vasconcelos, N.: Scene classification with low-dimensional semantic spaces and weak supervision. In: CVPR, pp. 1–6 (2008)
Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV, vol. 2, pp. 1470–1477 (2003)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Le Borgne, H., Fuentes, P.M. (2011). Nonparametric Estimation of Fisher Vectors to Aggregate Image Descriptors. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-23687-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23686-0
Online ISBN: 978-3-642-23687-7
eBook Packages: Computer ScienceComputer Science (R0)