Abstract
Visual servoing has been proven to obtain better performance than mechanical encoders for position acquisition. However, the often computationally intensive vision algorithms and the ever growing demands for higher frame rate make its realization very challenging. This work performs a case study on a typical industrial application, organic light emitting diode (OLED) screen printing, and demonstrates the feasibility of achieving ultra high frame rate visual servoing applications on both field programmable gate array (FPGA) and single instruction multiple data (SIMD) processors. We optimize the existing vision processing algorithm and propose a scalable FPGA implementation, which processes a frame within 102 μs. Though a dedicated FPGA implementation is extremely efficient, lack of flexibility and considerable amount of implementation time are two of its clear drawbacks. As an alternative, we propose a reconfigurable wide SIMD processor, which balances among efficiency, flexibility, and implementation effort. For input frames of 120×45 resolution, our SIMD can process a frame within 232 μs, sufficient to provide a throughput of 1000 fps with less than 1 ms latency for the whole vision servoing system. Compared to the reference realization on MicroBlaze, the proposed SIMD processor achieves a 21× performance improvement.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbo, A., et al.: Xetal-II: a 107 GOPS, 600 mW massively parallel processor for video scene analysis. IEEE Journal of Solid-State Circuits 43(1), 192–201 (2008)
de Best, J., et al.: Direct dynamic visual servoing at 1 khz by using the product as 1.5d encoder. In: ICCA 2009, pp. 361–366 (December 2009)
Furukawa, N., et al.: Dynamic regrasping using a high-speed multifingered hand and a high-speed vision system. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 181–187 (2006)
Ginhoux, R., et al.: Beating heart tracking in robotic surgery using 500 Hz visual servoing, model predictive control and an adaptive observer. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 274–279 (2004)
He, Y., Zivkovic, Z., Kleihorst, R.P., Danilin, A., Corporaal, H., Mesman, B.: Real-Time Hough Transform on 1-D SIMD Processors: Implementation and Architecture Exploration. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 254–265. Springer, Heidelberg (2008)
He, Y., et al.: Xetal-Pro: An Ultra-Low Energy and High Throughput SIMD Processor. In: Proceedings of the 47th Annual Design Automation Conference (2010)
Kyo, S., et al.: IMAPCAR: A 100 GOPS In-Vehicle Vision Processor Based on 128 Ring Connected Four-Way VLIW Processing Elements. Journal of Signal Processing Systems, 1–12 (2008)
Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 285–296 (1975)
Pieters, R., Jonker, P., Nijmeijer, H.: Real-Time Center Detection of an OLED Structure. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 400–409. Springer, Heidelberg (2009)
Pieters, R., et al.: High performance visual servoing for controlled m-positioning. In: WCICA, pp. 379–384 (2010)
Xilinx, Inc., http://www.xilinx.com/tools/microblaze.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
He, Y., Ye, Z., She, D., Mesman, B., Corporaal, H. (2011). Feasibility Analysis of Ultra High Frame Rate Visual Servoing on FPGA and SIMD Processor. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_56
Download citation
DOI: https://doi.org/10.1007/978-3-642-23687-7_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23686-0
Online ISBN: 978-3-642-23687-7
eBook Packages: Computer ScienceComputer Science (R0)