Skip to main content

Combining Plane Estimation with Shape Detection for Holistic Scene Understanding

  • Conference paper
Book cover Advanced Concepts for Intelligent Vision Systems (ACIVS 2011)

Abstract

Structural scene understanding is an interconnected process wherein modules for object detection and supporting structure detection need to co-operate in order to extract cross-correlated information, thereby utilizing the maximum possible information rendered by the scene data. Such an inter-linked framework provides a holistic approach to scene understanding, while obtaining the best possible detection rates. Motivated by recent research in coherent geometrical contextual reasoning and object recognition, this paper proposes a unified framework for robust 3D supporting plane estimation using a joint probabilistic model which uses results from object shape detection and 3D plane estimation. Maximization of the joint probabilistic model leads to robust 3D surface estimation while reducing false perceptual grouping. We present results on both synthetic and real data obtained from an indoor mobile robot to demonstrate the benefits of our unified detection framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, S.Y.-Z., Sun, M., Savarese, S.: Toward coherent object detection and scene layout understanding. In: CVPR, pp. 65–72 (2010)

    Google Scholar 

  2. Sun, M., Bao, S.Y.-Z., Savarese, S.: Object detection with geometrical context feedback loop. In: BMVC, pp. 1–11 (2010)

    Google Scholar 

  3. Li, L.J., Fei-Fei, L.: What, where and who? classifying events by scene and object recognition. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  4. Saxena, A., Chung, S., Ng, A.: 3-d depth reconstruction from a single still image. International Journal of Computer Vision 76, 53–69 (2008)

    Article  Google Scholar 

  5. Hoiem, D., Efros, A., Hebert, M.: Recovering surface layout from an image. International Journal of Computer Vision 75, 151–172 (2007)

    Article  MATH  Google Scholar 

  6. Cornelis, N., Leibe, B., Cornelis, K., Van Gool, L.: 3d urban scene modeling integrating recognition and reconstruction. International Journal of Computer Vision 78, 121–141 (2008)

    Article  Google Scholar 

  7. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. In: CVPR 2006, vol. 2, pp. 2137–2144 (2006)

    Google Scholar 

  8. Hoiem, D., Rother, C., Winn, J.: 3d layoutcrf for multi-view object class recognition and segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  9. Roberts, L.G.: Machine Perception of 3D Solids. PhD thesis, Dept. of Electrical Engineering, Massachusetts Institute of Technology (1963)

    Google Scholar 

  10. Nedovic, V., Smeulders, A., Redert, A., Geusebroek, J.M.: Stages as models of scene geometry. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1673–1687 (2010)

    Article  Google Scholar 

  11. Helmer, S., Lowe, D.: Using stereo for object recognition. In: IEEE International Conference on Robotics and Automation, ICRA 2010, pp. 3121–3127 (2010)

    Google Scholar 

  12. Congcong, L., Adarsh, K., Ashutosh, S., Tsuhan, C.: Towards holistic scene understanding: Feedback enabled cascaded classification models. In: Twenty-Fourth Annual Conference on Neural Information Processing Systems (2010)

    Google Scholar 

  13. Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. Int. J. Comput. Vision 73, 41–59 (2007)

    Article  Google Scholar 

  14. Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiransac algorithm and its application to detect planar homographies. In: IEEE International Conference on Image Processing (2005)

    Google Scholar 

  15. Toldo, R., Fusiello, A.: Robust multiple structures estimation with J-linkage. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 537–547. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Zhang, W., Kosecka, J.: Nonparametric estimation of multiple structures with outliers. In: Dynamical Vision Workshop (2006)

    Google Scholar 

  17. Chin, T., Wang, H., Suter, D.: Robust fitting of multiple structures: The statistical learning approach. In: ICCV (2009)

    Google Scholar 

  18. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with label costs. In: CVPR (2010)

    Google Scholar 

  19. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  20. Stewart, C.V.: Bias in robust estimation caused by discontinuities and multiple structures. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 818–833 (1997)

    Article  Google Scholar 

  21. Gallo, O., Manduchi, R., Rafii, A.: CC-RANSAC: Fitting planes in the presence of multiple surfaces in range data. Pattern Recogn. Lett. 32, 403–410 (2011)

    Article  Google Scholar 

  22. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)

    Article  Google Scholar 

  23. Dickinson, S., Bergevin, R., Biederman, I., Eklund, J., Munck-Fairwood, R., Jain, A.K., Pentland, A.: Panel report: The potential of geons for generic 3-d object recognition. Image and Vision Computing 15, 277–292 (1997)

    Article  Google Scholar 

  24. Tang, X., Okada, K., Malsburg, C.v.d.: Represent and Detect Geons by Joint Statistics of Steerable Pyramid Decomposition. Technical Report 02-759, Computer Science Department, University of Southern California (2002)

    Google Scholar 

  25. Lowe, D.G.: Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31, 355–395 (1987)

    Article  Google Scholar 

  26. Nelson, R.C., Selinger, A.: A cubist approach to object recognition. Technical Report TR689, Dept. of Computer Science, Univ. of Rochester (1998)

    Google Scholar 

  27. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 36–51 (2008)

    Article  Google Scholar 

  28. Ommer, B., Malik, J.: Multi-Scale Object Detection by Clustering Lines. In: International Conference on Computer Vision (2009)

    Google Scholar 

  29. Dickinson, S., Metaxas, D.: Integrating Qualitative and Quantitative Object Representations in the Recovery and Tracking of 3-D Shape. In: Harris, L., Jenkin, M. (eds.) Computational and Psychophysical Mechanisms of Visual Coding, pp. 221–248. Cambridge University Press, New York (1997)

    Google Scholar 

  30. Sala, P., Dickinson, S.: Model-Based Perceptual Grouping and Shape Abstraction. In: The Sixth IEEE Computer Society Workshop on Perceptual Grouping in Computer Vision, POCV (2008)

    Google Scholar 

  31. Sarkar, S., Boyer, K.L.: A computational structure for preattentive perceptual organization: Graphical enumeration and voting methods. IEEE Transactions on System, Man and Cybernetics 24, 246–266 (1994)

    Article  Google Scholar 

  32. Zillich, M., Vincze, M.: Anytimeness Avoids Parameters in Detecting Closed Convex Polygons. In: The Sixth IEEE Computer Society Workshop on Perceptual Grouping in Computer Vision, POCV (2008)

    Google Scholar 

  33. Richtsfeld, A., Vincze, M.: Basic object shape detection and tracking using perceptual organization. In: International Conference on Advanced Robotics, ICAR, pp. 1–6 (2009)

    Google Scholar 

  34. Wang, Z., Wu, F., Hu, Z.: Msld: A robust descriptor for line matching. Pattern Recognition 42, 941–953 (2009)

    Article  Google Scholar 

  35. Yasovardhan, R., Hemanth, K., Krishna, K.: Estimating ground and other planes from a single tilted laser range finder for on-road driving. In: International Conference on Advanced Robotics, ICAR 2009, pp. 1–6 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, K., Richtsfeld, A., Varadarajan, K.M., Zillich, M., Vincze, M. (2011). Combining Plane Estimation with Shape Detection for Holistic Scene Understanding. In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2011. Lecture Notes in Computer Science, vol 6915. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23687-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23687-7_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23686-0

  • Online ISBN: 978-3-642-23687-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics