Abstract
Different notions of coherence and consistence have been proposed in the literature on fuzzy systems. In this work we focus on the relationship between some of the approaches developed, on the one hand, based on residuated lattices and, on the other hand, based on the theory of bilattices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alcântara, J., Damásio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent logic programs. J. Applied Logic 3(1), 67–95 (2005)
Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: International Symposium on Logical Formalization of Commonsense Reasoning. AAAI 2003 Spring Symposium Series, pp. 9–18 (2003)
Barceló, P., Bertossi, L.: Logic programs for querying inconsistent databases. In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 208–222. Springer, Heidelberg (2002)
Cornelis, C., Arieli, O., Deschrijver, G., Kerre, E.E.: Uncertainty modeling by bilattice-based squares and triangles. IEEE T. Fuzzy Systems 15(2), 161–175 (2007)
Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001)
Deschrijver, G., Arieli, O., Cornelis, C., Kerre, E.E.: A bilattice-based framework for handling graded truth and imprecision. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(1), 13–41 (2007)
Dubois, D., Prade, H., Ughetto, L.: Checking the coherence and redundancy of fuzzy knowledge bases. IEEE T. Fuzzy Systems 5(3), 398–417 (2002)
Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Programming 11, 91–116 (1991)
Fitting, M.: Fixpoint semantics for logic programming - a survey. Theoretical Computer Science 278, 25–51 (1999)
Ginsberg, M.: Multivalued logics: A uniform approach to inference in artificial intelligence. Computational Intelligence 4, 265–316 (1988)
Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of Intelligent Information Systems 27(2), 159–184 (2006)
Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic, Dordrecht (1998)
Madrid, N., Ojeda-Aciego, M.: Towards a fuzzy answer set semantics for residuated logic programs. In: Proc. of WI-IAT 2008 Workshop on Fuzzy Logic in the Web, pp. 260–264 (2008)
Madrid, N., Ojeda-Aciego, M.: On coherence and consistence in fuzzy answer set semantics for residuated logic programs. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 60–67. Springer, Heidelberg (2009)
Madrid, N., Ojeda-Aciego, M.: Measuring inconsistency in fuzzy answer set semantics. IEEE Transactions on Fuzzy Systems (2011) (accepted)
Yuan, L., You, J.: Coherence approach to logic program revision. IEEE Tr. Knowledge and Data Engineering 10(1), 108–119 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Damásio, C.V., Madrid, N., Ojeda-Aciego, M. (2011). On the Notions of Residuated-Based Coherence and Bilattice-Based Consistence. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2011. Lecture Notes in Computer Science(), vol 6857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23713-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-23713-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23712-6
Online ISBN: 978-3-642-23713-3
eBook Packages: Computer ScienceComputer Science (R0)