Skip to main content

On the Notions of Residuated-Based Coherence and Bilattice-Based Consistence

  • Conference paper
Fuzzy Logic and Applications (WILF 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6857))

Included in the following conference series:

  • 886 Accesses

Abstract

Different notions of coherence and consistence have been proposed in the literature on fuzzy systems. In this work we focus on the relationship between some of the approaches developed, on the one hand, based on residuated lattices and, on the other hand, based on the theory of bilattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcântara, J., Damásio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent logic programs. J. Applied Logic 3(1), 67–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: International Symposium on Logical Formalization of Commonsense Reasoning. AAAI 2003 Spring Symposium Series, pp. 9–18 (2003)

    Google Scholar 

  3. Barceló, P., Bertossi, L.: Logic programs for querying inconsistent databases. In: Dahl, V. (ed.) PADL 2003. LNCS, vol. 2562, pp. 208–222. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Cornelis, C., Arieli, O., Deschrijver, G., Kerre, E.E.: Uncertainty modeling by bilattice-based squares and triangles. IEEE T. Fuzzy Systems 15(2), 161–175 (2007)

    Article  MATH  Google Scholar 

  5. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Deschrijver, G., Arieli, O., Cornelis, C., Kerre, E.E.: A bilattice-based framework for handling graded truth and imprecision. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(1), 13–41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubois, D., Prade, H., Ughetto, L.: Checking the coherence and redundancy of fuzzy knowledge bases. IEEE T. Fuzzy Systems 5(3), 398–417 (2002)

    Article  Google Scholar 

  8. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Programming 11, 91–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fitting, M.: Fixpoint semantics for logic programming - a survey. Theoretical Computer Science 278, 25–51 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsberg, M.: Multivalued logics: A uniform approach to inference in artificial intelligence. Computational Intelligence 4, 265–316 (1988)

    Article  Google Scholar 

  11. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of Intelligent Information Systems 27(2), 159–184 (2006)

    Article  Google Scholar 

  12. Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  13. Madrid, N., Ojeda-Aciego, M.: Towards a fuzzy answer set semantics for residuated logic programs. In: Proc. of WI-IAT 2008 Workshop on Fuzzy Logic in the Web, pp. 260–264 (2008)

    Google Scholar 

  14. Madrid, N., Ojeda-Aciego, M.: On coherence and consistence in fuzzy answer set semantics for residuated logic programs. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 60–67. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Madrid, N., Ojeda-Aciego, M.: Measuring inconsistency in fuzzy answer set semantics. IEEE Transactions on Fuzzy Systems (2011) (accepted)

    Google Scholar 

  16. Yuan, L., You, J.: Coherence approach to logic program revision. IEEE Tr. Knowledge and Data Engineering 10(1), 108–119 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damásio, C.V., Madrid, N., Ojeda-Aciego, M. (2011). On the Notions of Residuated-Based Coherence and Bilattice-Based Consistence. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2011. Lecture Notes in Computer Science(), vol 6857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23713-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23713-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23712-6

  • Online ISBN: 978-3-642-23713-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics