Abstract
We address the problem of how to measure amount of knowledge conveyed by an Atanassov’s intuitionistic fuzzy set (A-IFS for short). The problem is useful from the point of view of a specific purpose, notably related to decision making. An amount of knowledge is strongly linked to its related amount of information. We pay particular attention to the relationship between the positive and negative information and a lack of information expressed by the hesitation margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.: Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Deposed in Centr. Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (1983) (in Bulgarian)
Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg (1999)
Atanassov, K., Tasseva, V., Szmidt, E., Kacprzyk, J.: On the geometrical interpretations of the intuitionistic fuzzy sets. In: Atanassov, K., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics. EXIT, Warsaw (2005)
Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. In: IPMU 2006, pp. 2383–2390 (2006)
Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: Image thresholding using intuitionistic fuzzy sets. In: Atanassov, K., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Issues in the Representation and Processing of Uncertain and Imprecise Information. Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics. EXIT, Warsaw (2005)
De Luca, A., Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inform. And Control 20, 301–312 (1972)
Narukawa, Y., Torra, V.: Non-monotonic fuzzy measure and intuitionistic fuzzy set. In: Torra, V., Narukawa, Y., Valls, A., Domingo-Ferrer, J. (eds.) MDAI 2006. LNCS (LNAI), vol. 3885, pp. 150–160. Springer, Heidelberg (2006)
Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
Stewart, T.: Wealth of Knowledge, Doubleday, New York (2001)
Szmidt, E., Baldwin, J.: New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs 9(3), 60–76 (2003)
Szmidt, E., Baldwin, J.: Entropy for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs 10(3), 15–28 (2004)
Szmidt, E., Baldwin, J.: Intuitionistic Fuzzy Set Functions, Mass Assignment Theory, Possibility Theory and Histograms. IEEE World Congress on Computational Intelligence, 237–243 (2006)
Szmidt, E., Kacprzyk, J.: On measuring distances between intuitionistic fuzzy sets. Notes on IFS 3(4), 1–13 (1997)
Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)
Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118(3), 467–477 (2001)
Szmidt, E., Kacprzyk, J.: Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. In: IPMU 2004, pp. 1405–1412 (2004)
Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets: straightforward approaches may not work. In: 3rd International IEEE Conference Intelligent Systems IS 2006, London, pp. 716–721 (2006)
Szmidt, E., Kreinovich, V.: Symmetry between true, false, and uncertain: An explanation. Notes on IFS 15(4), 1–8 (2009)
Szmidt, E., Kukier, M.: Classification of imbalanced and overlapping classes using intuitionistic fuzzy sets. In: 3rd International IEEE Conference Intelligent Systems IS 2006, London, pp. 722–727 (2006)
Szmidt, E., Kacprzyk, J.: Some problems with entropy measures for the Atanassov intuitionistic fuzzy sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 291–297. Springer, Heidelberg (2007)
Szmidt, E., Kacprzyk, J.: A New Similarity Measure for Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. In: IEEE Conf. on Fuzzy Systems, pp. 481–486 (2007a)
Szmidt, E., Kacprzyk, J.: A new approach to ranking alternatives expressed via intuitionistic fuzzy sets. In: Ruan, D., et al. (eds.) Computational Intelligence in Decision and Control, pp. 265–270. World Scientific, Singapore (2008)
Szmidt, E., Kacprzyk, J.: Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives. In: Rakus-Andersson, E., Yager, R., Ichalkaranje, N., Jain, L.C. (eds.) Recent Advances in Decision Making. SCI, vol. 222, pp. 7–19. Springer, Heidelberg (2009)
Szmidt, E., Kacprzyk, J.: Dealing with typical values via Atanassov’s intuitionistic fuzzy sets. Int. J. of General Systems 39(5), 489–506 (2010)
Szmidt, E., Kukier, M.: A new approach to classification of imbalanced classes via Atanassov’s intuitionistic fuzzy sets. In: Wang, H.-F. (ed.) Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery, pp. 65–102. Idea Group, USA (2008)
Szmidt, E., Kukier, M.: Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds.) Intelligent Techniques and Tools for Novel System Architectures, pp. 455–471. Springer, Heidelberg (2008)
Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inform. Sciences 8, 199–249 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szmidt, E., Kacprzyk, J., Bujnowski, P. (2011). Measuring the Amount of Knowledge for Atanassov’s Intuitionistic Fuzzy Sets. In: Fanelli, A.M., Pedrycz, W., Petrosino, A. (eds) Fuzzy Logic and Applications. WILF 2011. Lecture Notes in Computer Science(), vol 6857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23713-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-23713-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23712-6
Online ISBN: 978-3-642-23713-3
eBook Packages: Computer ScienceComputer Science (R0)