Abstract
We consider the maximization of a gross substitutes utility function under budget constraints. This problem naturally arises in applications such as exchange economies in mathematical economics and combinatorial auctions in (algorithmic) game theory. We show that this problem admits a polynomial-time approximation scheme (PTAS). More generally, we present a PTAS for maximizing a discrete concave function called an M\(^\natural\)-concave function under budget constraints. Our PTAS is based on rounding an optimal solution of a continuous relaxation problem, which is shown to be solvable in polynomial time by the ellipsoid method. We also consider the maximization of the sum of two M\(^\natural\)-concave functions under a single budget constraint. This problem is a generalization of the budgeted max-weight matroid intersection problem to the one with a nonlinear objective function. We show that this problem also admits a PTAS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ausubel, L.M., Milgrom, P.: Ascending auctions with package bidding. Front. Theor. Econ. 1, Article 1 (2002)
Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Math. Programming (2009) (to appear)
Bing, M., Lehmann, D., Milgrom, P.: Presentation and structure of substitutes valuations. In: Proc. EC 2004, pp. 238–239 (2004)
Blumrosen, L., Nisan, N.: Combinatorial auction. In: Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 267–299. Cambridge Univ. Press, Cambridge (2007)
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (Extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Heidelberg (2007)
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint. SIAM J. Comput. (to appear)
Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press, Cambridge (2006)
Cunningham, W.H.: On submodular function minimization. Combinatorica 5, 185–192 (1985)
Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (1998)
Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J. Comput. 39, 122–142 (2009)
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proc. FOCS 2007, pp. 461–471 (2007)
Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Math. Programming 42, 489–563 (1988)
Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)
Fujishige, S., Yang, Z.: A note on Kelso and Crawford’s gross substitutes condition. Math. Oper. Res. 28, 463–469 (2003)
Grandoni, F., Zenklusen, R.: Approximation schemes for multi-budgeted independence systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 536–548. Springer, Heidelberg (2010)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Springer, Heidelberg (1993)
Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. Theory 87, 95–124 (1999)
Kelso, A.S., Crawford, V.P.: Job matching, coalition formation and gross substitutes. Econometrica 50, 1483–1504 (1982)
Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proc. SODA 2009, pp. 545–554 (2009)
Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23, 2053–2078 (2010)
Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econom. Behav. 55, 270–296 (2006)
Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)
Megiddo, N.: Combinatorial optimization with rational objective functions. Math. Oper. Res. 4, 414–424 (1979)
Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)
Murota, K.: Valuated matroid intersection, I: optimality criteria, II: algorithms. SIAM J. Discrete Math. 9, 545–561, 562–576 (1996)
Murota, K.: Discrete convex analysis. Math. Programming 83, 313–371 (1998)
Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
Murota, K.: Recent developments in discrete convex analysis. In: Cook, W.J., Lovász, J., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260. Springer, Heidelberg (2009)
Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)
Murota, K., Shioura, A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. in Appl. Math. 25, 352–427 (2000)
Murota, K., Tamura, A.: Application of M-convex submodular flow problem to mathematical economics. Japan J. Indust. Appl. Math. 20, 257–277 (2003)
Murota, K., Tamura, A.: New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discrete Appl. Math. 131, 495–512 (2003)
Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Shioura, A.: Minimization of an M-convex function. Discrete Appl. Math. 84, 215–220 (1998)
Shioura, A.: On the pipage rounding algorithm for submodular function maximization: a view from discrete convex analysis. Discrete Math. Algorithms Appl. 1, 1–23 (2009)
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)
Wolsey, L.A.: Maximising real-valued submodular functions: primal and dual heuristics for location problems. Math. Oper. Res. 7, 410–425 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shioura, A. (2011). Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility under Budget Constraints. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)