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Abstract. We present a deterministic O(n log log n) time algorithm for
finding shortest cycles and minimum cuts in planar graphs. The algo-
rithm improves the previously known fastest algorithm by Italiano et
al. in STOC’11 by a factor of log n. This speedup is obtained through
the use of dense distance graphs combined with a divide-and-conquer
approach.

1 Introduction

In this paper we study the minimum cut and shortest cycle problems in planar
graphs. The minimum cut problem is to find the cut with minimum capacity,
whereas the shortest cycle problem is to find the cycle with minimum total length.
These two problems are actually equivalent, since a shortest cycle corresponds to
a minimum cut in the dual graph. Moreover, the size of the minimum cut is equal
to the weighted edge-connectivity of the graph. In this paper when presenting
the algorithms we only talk about the problem of finding shortest cycle keeping
in mind that the min-cut problem can be solved using this reduction.

In general graphs the minimum cut can be found in O(m log3 n) randomized
time as shown by Karger [10], or in O(mn+n2 logn) deterministic time as given
by Nagamochi and Ibraki [12]. On the other hand, the shortest odd cycle can be
found in O(nm) time [8], whereas the shortest even length cycle can be found
in O(n2) time [16].

In the case of planar graphs these two problems have attracted consider-
able attention in recent years. Even in the case of the unweighted graphs these
problems are interesting. However, one needs to keep in mind that the duals
of unweighted graphs are not longer unweighted. Eppstein [4] was the first one
to show how to find cycles of constant weight in O(n) time. This result was
later on improved by Alon, Yuster and Zwick [1], who have shown an O(n) time
algorithm for finding shortest cycles of length ≤ 5. This actually implies a lin-
ear time algorithm for minimum cuts in planar unweighted graphs, as the sizes
of the minimum cuts are at most 5. On the other hand, the fastest algorithm
for finding the shortest cycle in unweighted graph (also called the girth of the
graph), was given by Weimann and Yuster [15]. This very recent algorithm works
in O(n log n) time.
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In the case of weighted planar graphs the fastest algorithm was proposed in
this year and works in O(n log n log log n) time [9]. This algorithm is obtained by
simply joining the O(n log2 n) time divide-and-conquer approach of Chalermsook
et al. [3] with a faster O(n log logn) time max-flow algorithm given in [9]. Here we
show an even further improvement by showing an O(n log logn) time algorithm
for both minimum cut and shortest cycle problem in weighted planar graphs.
This not only improves over the result in [9] but also over the result of Weimann
an Yuster [15] for unweighted graphs. The minimum cut problem is related to
minimum st-cut problem, where we need to find minimum cut that separates
s from t. Up until the paper of Italiano et al. [9] the fastest known algorithm
worked in O(n logn) time [6]. You may notice that the approach of Chalermsook
et al. [3] results in a logn complexity gap between min-cut and min st-cut
problems. In this paper we actually show how to close this gap, and we believe
that the techniques introduced here will be useful as well when faster min st-cut
algorithm are developed in the future.

In addition to the static results, we give a dynamic algorithm for comput-
ing the minimum cut size and the shortest cycle length in planar graphs. The
processes updates and answers queries in O(n5/6 log5/3 n) time and is the first
known dynamic result that is able to handle weighted edges and arbitrary edge
connectivity. The only previously known exact dynamic algorithm with update
time sublinear in n was able to maintain the information about polylogarithmic
edge connectivity in O(

√
n) time per update [14]. For the history of this problem

we refer you to the description in [14].
This paper is organized as follows. In next section we give a summary of

the techniques developed in the previous papers that we use. In Section 3 we
recall the Chalermsook et al. [3] algorithm. Our first algorithm that works in
O(n log n) time is given in Section 4. This algorithm actually builds a part of
the main result of this paper that is given in Section 5. The dynamic algorithm
is given in the final section of this paper.

2 Preliminaries

For a graph G = (V,E), we denote the set of its vertices and edges by V (G) and
E(G) respectively. Additionally, if G is planar, F (G) denotes the set of its faces.
If C is a cycle in a planar graph, we define its interior and exterior (denoted by
int(C) and ext(C)) to be the subgraphs embedded inside and outside the cycle,
both containing the cycle itself.

Simplifying Assumptions We will assume that the graph we work on is both
triangulated and has a constant degree. This can be easily achieved O(n) time by
first triangulating the dual graph with zero weight edges and then triangulating
the primal graph with infinite length edges using zigzag triangulations [2].

Graph r-division Define a piece P = (VP , EP ) of G to be the subgraph of G
defined by a subset EP of E. In G, the vertices of VP incident to vertices in V \VP



are the boundary vertices of P . We will denote the set of boundary vertices of
piece P by ∂P . Vertices of VP that are not boundary vertices of P are interior

vertices of P .
We define an r-division of G, to be a division of (the edges of) G into O(n/r)

pieces each containing O(r) vertices and O(
√
r) boundary vertices. A hole is a

finite face of P which is not a face of G. The following theorem was shown by
Italiano et al. [9].

Theorem 1. For a plane n-vertex graph, an r-division in which each piece has

O(1) holes can be found in O(n log r + (n/
√
r) log n) time.

In this paper, when we talk about an r-division, we shall assume that it has the
form as in Theorem 1.

For an r-division P , define a skeleton graph GP = (∂P , EP) to be a graph
over the set of border vertices in P . The edge set EP is composed of infinite
length edges connecting consecutive border vertices of each hole.

Dense Distance Graphs We use the r-division to define a representation for
shortest paths in a graph that has similar number of edges, but fewer vertices.
In order to achieve this, we use the notion of dense distance graphs. If G is edge-
weighted, we define the dense distance graph of a piece P to be the complete
graph on the set of boundary vertices of P where each edge (u, v) has weight
equal to the shortest path distance (w.r.t. the edge weights) in P between u and
v. A dense distance graph for an r-division is a set of dense distance graphs of
all its pieces. Observer that it contains O( n√

r
) nodes and O(n) edges.

Italiano et al. [9] have used an algorithm by Klein [11] to compute a dense
distance graph for any division.

Lemma 1. Given an r-division P, its dense distance graph can be computed in

O(n log r) time.

Fast Dijkstra The dense distance graphs can be used to speed up shortest path
computations using Dijkstra’s algorithm. It was shown by Fakcharoenphol and
Rao ([5], Section 3.2.2) that a Dijkstra-like algorithm can be executed on a dense
distance graph for a piece P in O(|∂P | log2 |P |) time. Having constructed the
dense distance graphs, we can run Dijkstra in time almost proportional to the
number of vertices (rather than to the number of edges, as in standard Dijkstra).
We use this algorithm in graphs composed of dense distance graphs and a subset
E′ of edges of the original graph G = (V,E):

Corollary 1. Dijkstra can be implemented in O(|E′| log |V |+
∑

i |∂Gi| log2 |∂Gi|)
time on a graph composed of a set of dense distance graphs Gi and a set of edges

E′ over the vertex set V .

Proof. In order to achieve this running time we use Fakcharoenphol and Rao [5]
data structure for each Gi. Moreover, minimum distance vertices from each Gi

and all endpoints of edges in E′ are kept in a global heap.



Algorithm 1 CFN algorithm for finding the shortest cycle in a planar graph G

1: procedure CFN Algorithm(planar graph G)
2: Reduce:

3: replace each degree 2 vertex v with an edge, whose weight is equal to the
sum of weights of edges incident to v

4: Divide:

5: find a shortest paths tree T

6: find an edge bc in G−T such that the cycle C in T + bc contains a constant
fraction of faces of G

7: recurse on G ∩ int(C) to find the shortest cycle Ci inside C

8: recurse on G ∩ ext(C) to find the shortest cycle Cx outside C

9: Conquer:

10: find shortest cycle Cc that crosses C

11: return the shortest cycle from Ce, Cx and Cc

Max Flow Queries Italiano et al. [9] have shown an O(n2/3 log8/3 n) time dy-
namic algorithm for computing max-flow values in planar graphs. More generally
speaking, they have presented an algorithm that allows the following tradeoffs
between preprocessing, update and query times.

Theorem 2. There exists a data structure that after O(n log r + n√
r
logn) pre-

processing time, supports: edge insertions and edge deletions in O((r+ n√
r
) log2 n)

time; s to t distance queries in O((r + n√
r
) log2 n) time; max st-flow queries in

O((r + n√
r
) log3 n) time, where r ∈ [1, . . . , n].

The only information maintained by the algorithm is an r-division together
with dense distance graphs for all pieces. If we set r = log8 n, then the ini-
tialization takes O(n log logn) time and the query time becomes O((log8 n +

n
log4 n

) log3 n) = O( n
logn ). Hence, we obtain the following static algorithm that

will be very useful for us:

Corollary 2. There exists a data structure that after O(n log logn) preprocess-

ing time, can compute a max st-flow value in O( n
logn ) time.

3 Chalermsook et al. Algorithm

Chalermsook, Fakcharoenphol and Nanongkai [3] have shown an O(n log2 n) al-
gorithm (we call it CFN from now on) for finding minimum cuts in undirected,
weighted planar graphs.

The algorithm of Chalermsook et al. uses a divide and conquer approach
(given as Algorithm 1).

Dividing Step The algorithm computes a shortest paths tree using a linear time
algorithm by Henzinger et al. [7]. Then it finds a cycle C that divides the graph



into two parts, both containing a constant fraction of all faces. The cycle C
consists of two shortest subpaths Qab and Qac, that belong to the tree, and
a path bc, which goes along a boundary of a face. After that, the algorithm
recursively computes the length of the shortest cycles inside and outside C. In
addition, a shortest cycle that crosses C is computed.

Conquering Step Let Q = q1q2 . . . qk be some shortest path in G, and let Fi be
any face incident to qi, for i = 1 and i = k. The following is a well know fact
(see e.g., [13]).

Lemma 2. The length of the shortest cycle which crosses Q an odd number of

times is equal to the length of the shortest cycle which separates F1 from Fk. For

every cycle C that crosses Q an even number of times, there exists a cycle which

does not cross Q and is not longer than C.

Let Fe be a face adjacent to bc that lies inside C and let Fa be a face from
outside of C that is adjacent to the first edge of Qab. The above lemma implies
directly the following result due to Chalermsook et al. [3].

Lemma 3. The length of the shortest cycle which crosses Ce an odd number of

times is equal to the length of the shortest cycle which separates Fa from Fe.

For every cycle C that crosses Ce an even number of times, there exists a cycle

which is fully contained either in int(Ce) or ext(Ce) and is not longer than C.

By duality of shortest cycles and minimum cuts, we can find such a shortest cycle
using a single maximum flow computation. This can be done in O(n log logn)
time using a recent algorithm by Italiano et al. [9]. In the following, whenever
we talk about the shortest cycle crossing some path or cycle, we actually mean
the shortest cycle that crosses it an odd number of times.

Reducing Step In the reducing step, we remove vertices of degree 2 by merging
their incident edges. As a result, all vertices have degree at least 3 and, by Euler’s
formula, the number of vertices is at most twice the number of faces. Moreover,
each dividing step adds at most one new face, so the total number of faces in
every recursion level is bounded by O(n). The same bound holds for the number
of vertices. There are O(log n) recursion levels and each requires O(n log logn)
time. Hence, the overall running time is O(n log n log logn).

4 An O(n logn) Time Algorithm

In this section we show how to obtain a faster algorithm by a simple modification
of the CFN algorithm. We present an improved version of the CFN algorithm
that still has O(log n) levels of recursion, but each of them will require O(n)
amortized time.

We now run the recursion as follows. Every log logn levels of the recursion,
in every branch of the recursion tree we reinitialize the maximum flow algorithm
from Corollary 2. Over all levels of the recursion this takesO( logn

log lognn log logn) =



O(n log n) time. Within log logn levels following the initialization, we issue at
most 2log logn = logn maximum flow queries to each maximum flow structure.
As we have observed, this requires only linear time. Hence, all maximum flow
computations require O(n log n) time.

The data structure is not recomputed in every step, but only from time to
time. Hence, a query for a shortest cycle separating two faces is answered using
the structure for larger part of the graph. However, this does not affect the final
result. When the graph has some additional vertices and edges, the length of the
shortest cycle can only decrease. Moreover, every cycle we find is a valid cycle
in the original graph, so the length of the shortest cycle in the whole graph is
computed correctly.

The CFN algorithm runs in O(n log n) time when we exclude time needed for
maximum flow computations. Here, we have shown how to perform all maximum
flow computations in O(n log n) time, thus reducing the running time of the
whole algorithm from O(n logn log logn) to O(n log n).

5 An O(n log logn) Time Algorithm

We show that the algorithm of Chalermsook et al. [3] can be implemented on
dense distance graphs. Instead of recursing on the subgraphs, we use the skeleton
graph. The dense distance graphs are kept in a global memory and referred when
needed. We follow the structure of Section 3 and describe how to implement all
three steps of the algorithm. However, here we stop the recursion when the
subgraph for recursion contains less than r nodes. Hence, we require a terminal
step that handles such small subgraphs at the end of the algorithm.

The first step in the CFN algorithm is building a shortest paths tree. We
also start by computing a shortest paths tree T in a dense distance graph of an
r-division. However, we require T to be noncrossing, which means that its every
edge can be mapped to an underlying shortest path inside one piece in such a way,
that the paths do not cross 1. We use the linear time algorithm by Henzinger
et al. [7] for finding shortest paths in a planar graph with nonnegative edge
weights. Then for each piece of the decomposition we map the shortest subpaths
connecting border vertices to their corresponding edges in the dense distance
graph. The resulting tree is noncrossing.

The main part of the algorithm is based on a divide and conquer technique.
We start by building an r-division and a skeleton graph for the given graph. We
define a recursion graph. This graph will be used to represent the parts of the
entire r-division that are considered in recursive calls. Initially this is a skeleton
graph. In every step the graph is divided by intersecting it with an interior and
exterior of some cycle. To represent this process, we insert division edges to the
recursion graph. Those edges connect border vertices belonging to one piece. We
never add vertices to the recursion graph, so it has O( n√

r
) vertices all the time.

1 Note that if a piece has holes, this can happen even if edges of T can be embedded
in the plane without crossing.



A region is a subgraph of the recursion graph bounded with division edges.
Every region represents a part of the graph that is processed in one recursive
call (see Fig. 1).

Regions contain faces of two kinds. Some faces contain parts of the graph that
are represented by this region (e.g. the light gray faces of region A in Fig. 1). We
call those faces internal faces. The rest of faces contains parts of the graph, that
are to be processed in other branches of the recursion (e.g. the face of region A
which contains region B or the outer face of A). Every face of the graph belongs
to exactly one region, but edges and vertices can be in multiple regions.

Note that we can insert a division edge connecting some pair of border ver-
tices multiple times. This means that for some region R only the shortest path
connecting those two vertices belongs to R. Since we want the recursion graph
to be simple, if there are multiple division edges connecting a pair of border
vertices within the same piece, we merge them into a single edge. Such edges
can belong to many regions.

Whenever we need to extract the distance between two border vertices from
one piece, we check whether they belong to the same internal face of the region
or if they are connected with a division edge (or a super edge, which is defined
later). If this is the case, we return length of the appropriate edge from the dense
distance graph. Otherwise, the distance is infinite.

5.1 Dividing Step

The dividing step of the CFN algorithm finds a cycle that splits the graph into
two subgraphs, both containing at most 2

3 of all faces. It is a fundamental cycle
determined by one edge in a shortest paths tree. This is what we do as well, but
we use the noncrossing shortest paths tree to do it more efficiently.

We find a cycle that is composed of two subpaths Qab′ and Qac′ of the
shortest paths tree T , two shortest paths Q′

b′b and Q′
c′c (in the original graph)

fully contained within one piece of the decomposition and an edge bc. Those
paths form a cycle which cuts the original graph into two pieces, each containing
a constant fraction of faces.

We build a planar graph F by taking the union of edges of the skeleton
graph GP and T . F can contain multiple edges between some pairs of vertices.
A spanning tree SF of its dual can be constructed by taking edges corresponding
to edges from the skeleton graph (see Fig. 2).

We assign weights to vertices of SF . A vertex v of SF corresponds to a face
f from F . We define its weight as the number of faces of G which are inside f
in their common embedding. Those values can be computed right after building
the shortest paths tree in the beginning.

Denote by W the total weight of all vertices. The goal is to find a vertex w
in SF such that the total weight of its subtree is at least W

2 and the weight of

its every child subtree is smaller than W
2 . This can be achieved in linear time by

walking down the tree (starting from the root) and always choosing the heaviest
subtree.



Let us denote by P the piece containing the face corresponding to w. We
build a graph FP in the following way. First, we take the tree T and, by running
Dijkstra’s algorithm in piece P , we extend T with paths to all internal vertices
of P , thus obtaining a tree TP . This requires O(r log r) time. The graph FP

consists of the skeleton graph GP , the tree TP and all edges of P , which do not
belong to TP .

Again, we build a spanning tree SFP
of the dual graph, by taking edges that

do not belong to TP . The weight of a vertex v ∈ V (SFP
) is the number of faces

of G embedded inside v. Thus, total weight of SFP
is equal to the total weight

of SF . In fact, SFP
can be obtained from SF by splitting some vertices.

Then we find a vertex w in the tree SFP
, such that the total weight of its

subtree is at least W
2 and the weight of subtrees rooted in all its children is

smaller than W
2 . If we apply the routine describe earlier and break ties the same

way as previously, we find a vertex w, which corresponds to a face belonging to
piece P . This means that the weight of w is equal to 1 and its degree is 3. It
is easy to observe that by removing an appropriate edge e′ incident to w, we
can split the tree into two parts which contain a constant fraction of the total
weight.

The edge e which is a primal edge corresponding to e′ determines a funda-
mental cycle Ce in TP , which splits the graph into two pieces, both containing
a constant fraction of all faces of the original graph. We now want to cut the
graph with this cycle and recurse into two smaller subgraphs.

It remains to show how to carry out the cutting. We describe how to do it
for pieces that contain no holes. The general case is handled in the appendix.

The cycle Ce consists of shortest subpaths between border vertices (except
for the piece P ). Hence, for any piece P ′ other than P shortest paths both in
P ′∩ int(Ce) and P ′∩ext(Ce) do not cross Ce. This implies that the distances in
both parts are preserved, so it suffices to insert one division edge that connects
two respective border vertices to the recursion graph.

To cut the piece P , we have to use a different approach. We use Klein’s
algorithm [11] to rebuild the dense distance graphs of P∩int(Ce) and P∩ext(Ce)
in O(r log r) time, as given by Corollary 1. A division edge is inserted between
the border vertices of P connected by Ce.

The last step is to cut the noncrossing shortest paths tree T . Since the cut Ce

does not cross any edge of T , suffices to divide it into int(Ce)∩T and ext(Ce)∩T .
Note that the shortest path tree ext(Ce) ∩ T is rooted in the vertex a, which
belongs to Ce.

5.2 Conquering Step

In the previous section we have shown how to find a cycle Ce, which divides the
graph into two subgraphs of roughly the same size. The cycle Ce can be mapped
to a fundamental cycle determined by a single edge e in a shortest paths tree
of the original graph. This means that it consists of two shortest subpaths Qab

and Qac and the edge e = bc. By Lemma 3, to find the shortest cycle crossing



Ce we need a single maximum-flow computation. Note that the cycle Ce might
not be simple, i.e. Qab and Qac can share some edges in the beginning, but the
lemma still holds. As discussed in the previous section, we have the r-division
and dense distance graphs ready in each recursive call. This allows us to use the
algorithm from Theorem 2 to answer max st-flow queries in O((r + n√

r
) log3 n)

time.

5.3 Reducing Step

In the CFN algorithm in the reduction step we have removed degree 2 vertices.
This was done in order to bound the total number of vertices in all branches on
each level of the recursion. Here, we would like to do the same.

The total number of vertices in one level of the recursion is the total number
of vertices in all regions. Some vertices can be counted many times, if they belong
to multiple regions. Each face, on the other hand, is in exactly one region.

Consider a region R. Some of its vertices are adjacent to the faces of the
recursion graph, which are inside R. It follows that the number of such vertices
is equal to the sum of sizes of all faces from the interior of R, so there are O( n√

r
)

such vertices in total.

R can also contain some vertices that are not adjacent to any face from
its interior. From among those, we find vertices incident to exactly two division
edges. If we take the part of the original graph corresponding to R, those vertices
also have degree two. Therefore, we remove each such vertex and replace its
incident edges e1 and e2 with a super edge, whose length is the sum of lengths of
e1 and e2 (in Fig. 1, the path from region A going along the boundary of region
B is replaced with a super edge). Note that there can be no vertices incident to 0
or 1 division edge in R. For the analysis, let us also get rid of all other vertices of
degree 2 with a a similar procedure. We obtain a planar graph R′ with vertices
of degree at least 3.

The degree bound implies that |V (R′)| = O(|F (R′)|). Removing vertices of
degree two does not increase the number of faces, so |V (R′)| = O(|F (R)|) 2. In
every recursion step, we divide one region into two regions with a single cycle.
This increases the total number of faces in all regions by a constant. Since there
are O( n√

r
) recursion steps, we conclude that |V (R′)| = O( n√

r
), so there are

O( n√
r
) vertices not adjacent to an interior face in any region.

Corollary 3. The total number of vertices in all regions in every recursion level

is O( n√
r
).

Observe that the same argument allows us to bound the number of super
edges with O( n√

r
).

2 Here F (R) denotes the set of all faces of R, not only those from its interior.



5.4 Terminal Step

Each recursive call for region with k vertices consists of the following steps:

1. Find a cycle Ce that, when mapped to the original graph, divides it into two
parts containing constant fraction of faces. This requires O(k+ r log r) time.

2. Compute the length of the shortest cycle separating two given faces. This
step runs in O((r + k) log3 k).

3. Insert a division edges corresponding to Ce to the recursion graph and divide
the shortest path tree.

Hence, the total running time of each call is O((r + k) log3 k). We run the
recursion as long as r ≤ k. This implies that the total cost of each step would be
dominated by the summand depending on k. Since we start with a graph with
O( n√

r
) vertices, the recursion takes O( n√

r
log4 n) total time.

If in any recursive call r > k, we abandon the recursion and use a different
approach for finding the shortest cycle within the current region R. We will refer
to such recursive calls as terminal recursive calls.

For each region R in from a terminal recursive call we need to compute the
part of the original graph, which corresponds to it. We find a graph GR, which
represents the part corresponding to R, in a compressed way. Namely, some
paths composed of vertices of degree 2 are replaced with one edge. The process
of finding graphs GR is described in the appendix.

Lemma 4. All graphs GR can be computed in O(n log r) time. The sum of

|V (GR)| over all regions R is O(n).

It remains to find the length of the shortest cycle within each GR. In order
to do that, we use the O(n log n) algorithm for computing the girth from section
4. The following lemma is necessary to bound the running time of the terminal
calls.

Lemma 5. For each R, |V (GR)| = O(r2).

Proof. By the definition of the terminal recursive call, |V (R)| < r, so GR can
contain at most r vertices that are border vertices of some pieces. All other
vertices lie inside the interior faces of R. Each such face is fully contained within
one piece of the r-division, so it contains at most O(r) vertices. Since there are
at most O(r) faces in R, we conclude that there are O(r2) vertices in GR in
total. ⊓⊔

From the above lemmas, it follows that running the running time of the
O(n log n) algorithm on all GR is

∑

R

O(|V (GR)| log |V (GR)|) ≤
∑

R

O(|V (GR)| log r2)

= O(log r)
∑

R

|V (GR)| = O(n log r).

Thus, the whole algorithm requires O( n√
r
log4 n) + O(n log r) time. Setting

r = log8 n yields an O(n log logn) algorithm.



6 Dynamic Shortest Cycle

In this section we show how to use the ideas introduced in the previous section
to construct a dynamic algorithm for finding minimum cuts in planar graphs.
We show how to maintain a planar graph G with positive edge weights under
an intermixed sequence of the following operations: insert(x, y, c) add to G an
edge of weight c between vertex x and vertex y, provided that the embedding
of G does not change; delete(x, y) delete from G the edge between vertex x and
vertex y; shortest-cycle return the length of the shortest cycle in G.

6.1 Shortest Cycles through Given Edge

In our algorithm we use a dynamic data structure that supports the following
operations: insert(x, y, c) add to G an edge of weight c between vertex x and
vertex y, provided that the embedding of G does not change; delete(x, y) delete
from G the edge between vertex x and vertex y; shortest-cycle(x, y) return the
length of the shortest cycle that includes edge (x, y).

The existence of such dynamic algorithm is implied by Theorem 2.

Lemma 6. Given a planar graph G with positive edge weights, we can insert

edges, delete edges and report the length of a shortest cycle that includes given

edge in O(n2/3 log5/3 n) worst-case time per operation.

Proof. For supporting updates we simply use Theorem 2 for r = n2/3 log2/3 n.
When we need to answer a query for an edge (x, y) we: delete edge (x, y); ask for
the shortest distance from x to y – this plus the length of (x, y) is the shortest
cycle length; reinsert edge (x, y). Hence, the answer to a shortest-cycle(x, y)
query can be computed using three operations of the original data structure. ⊓⊔

6.2 Data structures and Updates

In our dynamic algorithm we maintain two data structures from Theorem 2:
structure A for r = n1/3; structure B for r = n2/3 log2/3 n.

Initialization of both structures requires O(n logn) time. Additionally, in the
beginning we compute the length of the shortest cycle fully contained within
each piece used by structure A. This also runs in O(n log n) time.

The edge updates are handled using Theorem 2, i.e., for each piece in the
decomposition we maintain the dense distance graph. Additionally, in structure
A we find a shortest cycle contained fully inside the piece, which the inserted or
deleted edge belongs to. This does not increase running time of the algorithm
even when we use the O(n log n) time algorithm from Section 4. The update
time is then O(n5/6 log2 n).

Our algorithm for answering queries follows the lines of the O(n log logn)
algorithm. However, instead of using the r-division for r = log8 n we use the r-
division given by structure A for r = n1/3. In previous section we have essentially
shown that for polylogarithmic r we obtained polylogarithmic speed up for the



CFN algorithm. By taking polynomial r we are able to obtain a polynomial
speed up of CFN. For r = n1/3 the speed up will be by a factor of n1/6 and
the running time of our algorithm will be O(n5/6 log3 n). Nevertheless there are
some technical differences between the static and dynamic algorithm which are
included in Appendix C. The main difference is that we might need to divide the
graph using cycles defined by several non-tree edges. In order to find shortest
cycles crossing many non-tree edges we use Lemma 6 applied to structure B.
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Fig. 1. The recursion graph with three regions A, B and C. The interiors of regions
are colored light gray, gray and white, respectively. Each edge is marked with two or
three strokes to represent boundaries of regions going through this edge. In particular,
the path along the boundary of region B belongs to all three regions.

Fig. 2. Graph F and the spanning tree SF . Vertices of the skeleton graph are marked
with circles and its edges with dashed segments. Bold edges are the edges from the
shortest paths tree T . The spanning tree of the dual graph (SF ) consists of the square
vertices connected with thin solid arcs.

Fig. 3. Graph FP . Vertices are marked with circles and its edges with dashed segments.
Bold edges are the edges from the shortest paths tree TP . The spanning tree of the
dual has been omitted for readability.



A Dealing with holes

In this section we show how to deal with some issues that might arise when the
r-division contains holes. By Theorem 1, we can assume that there are is at most
a constant number of holes in every piece.

A.1 Intersecting pieces with a cycle

In the dividing step of the algorithm we intersect some pieces with the interior
and exterior of a cycle Ce. This is done implicitly, by inserting division edges,
but if a piece has holes, each edge can be embedded in various ways. For our
algorithm it suffices if the edge is inserted in such a way, that it partitions the
set of holes into two parts in the same way as the corresponding shortest path.
This does not imply that the edge is homotopic to the shortest path (see Fig. 4).

Fig. 4. Two ways of embedding a division edge (marked in bold), which correspond to
the same division of the set of holes.

This cycle Ce consists of edges from dense distance graphs and a path going
within one piece. We cut this piece by tracking the cycle and rebuilding dense
distance graphs on its both sides in O(r log r) time. It remains to describe how
to intersect a piece P with a cycle consisting of edges from the dense distance
graph.

We consider the subgraph of the skeleton graph induced by border vertices
of P . It has one connected component that is composed of border vertices that
do not belong to any hole. Let us call this component a frame of P .

We take a subpath of Ce that connects two vertices of frame of P (call this
subpath CP ). Ce can go through P multiple times, but we consider all such
subpaths one at a time.

First, we cut all holes recursively, so we can replace every part of CP , which
is contained within one hole, with a single edge. CP cuts this graph into two
parts. For each hole we need to compute which part it belongs to. This is easy
if a hole is cut into two pieces with CP , but a bit more complex in other cases.

We extend the initial computation of the dense distance graph. Assume that
there are l holes H1, H2, · · · , Hl. For each hole Hi we fix a path in the dual
graph from the outer face to the hole. This path corresponds to a curve KHi



that connects an edge from the frame of P with an edge connecting two border
vertices of Hi. Such a curve determines a set of edges EHi

which are crossed by
it.

After that, for each edge of the dense distance graph we want to compute
whether its underlying shortest path contains an even or odd number of edges
from EHi

. In order to do that, when computing the dense distance graphs,
we modify edge lengths. For an edge e we replace its length d with a tuple
(d, h1, h2, · · · , hl), where hi ∈ {0, 1} is equal to 1 iff e belongs to EHi

. The tuples
are compared in lexicographic order, which assures that the shortest paths are
not affected with this operation. Nor is the running time, as there is a constant
number of holes. As a result, we know how many edges from each EHi

are crossed
by every edge of the dense distance graph.

Once we know that, when we cut the piece P with CP , for every hole H
we know the parity of the number of crosses of CP and KH . We also know the
circular ordering of the beginning of KH and the first and the last vertex of
CP . This allows us to determine which side of the cut does every hole belong
to. Assume that Hi is not crossed by CP . Then, it is on the same side of CP

as the beginning of KHi
if and only if the number of times CP crosses KHi

is
even. This is because every time KHi

crosses CP , it switches to a different side
of CP (see Fig. 5). Hence, we can embed the division edge in any way, which is
coherent with the computed partition of holes.

Fig. 5. Determining, which side of CP does every hole belong to. CP is marked with a
dashed line, curves KHi

are solid.

Lastly, we have to cut the dense distance graph of P into two parts. We simply
insert one division edge to the recursion graph and assume that the distances
inside each part are equal to distances inside P . This is in general incorrect for
pieces with holes, as some shortest path might cross CP many times. Hence,
it might occur that the real distance between two vertices is bigger than we
have assumed. This, however, does not affect our final result, as every distance
corresponds to some valid path in the original graph, contained within the same
piece.



The lengths of the edges are used only in minimum st-separating cycle com-
putation in the conquering step (s and t are faces), carried out with Italiano et

al. algorithm [9]. If we take the computed cycle and map every edge of the dense
distance graph to the shortest path, which determines the length of this edge,
we obtain a closed walk. We have to show that this walk bounds some nonempty
set of faces in the graph. This follows easily from the algorithm, as it works with
a graph composed of pieces containing s and t and dense distance graphs of all
other pieces. Hence, the walk has to separate s from t, which means that it has
nonempty interior. It can be shorter than the shortest cycle contained within
the currently considered part of the graph, but is surely not shorter than the
globally shortest cycle.

A.2 Additional preprocessing from the algorithm by Italiano et al.

In the presence of holes, the dynamic algorithm by Italiano et al. [9] performs
additional preprocessing. For each piece P and each pair of its holes h and h′

(in this section, the outer face of the piece is also considered a hole) we fix
a path with some structural properties, that connects these holes. Then, a we
compute the dense distance graph for the piece after making an incision along
this path. This dense distance graph is used when we ask for the shortest cycle
that separates faces contained in h and h′.

As the divide and conquer algorithm proceeds, we also have to cut those
dense distance graphs. This is, however, done implicitly by updating the re-
cursion graph. As previously shown in the previous section, the distances after
performing the cut in this way might be in general invalid, but every distance
corresponds to some valid path that is contained within the same piece and does
not cross the incision. This guarantees that every cycle we find is a valid cycle
in the entire graph and is not longer than the shortest cycle in the currently
processed part of the graph.

B Proof of Lemma 4

In order to reconstruct all GR, we need to map every division edge to the under-
lying subpath in the original graph. There are two types of division edges. Edges
of the first type correspond to paths in piece P , which are computed explicitly
in the division step. We can store all such paths in a global memory and use
them for division later on.

The division edges of the second type correspond to shortest paths connecting
border vertices of P . We will first split each piece in the graph using edges of the
second type. Then we will use the first type edges to split the resulting regions
into smaller parts.

Note that there are at most O(
√
r) such edges as they do not cross. Due

to our assumption that the graph has constant degree, a path of length l from
one piece can be reconstructed in O(l) time with Klein’s algorithm [11]. If a is
a border vertex and b is an arbitrary vertex, the algorithm can report the first



edge of the shortest b to a path in constant time, provided that the graph has
constant degree. However, as these paths may share many edges we need to be
more careful and assure that we will not scan each edge too many times. In the
worst case it could take O(r3/2) time.

We consider division edges of P one by one. Take the division edge e and find
the shortest path π corresponding to it. We split the piece P into parts on both
sides of π. Both parts include vertices and edges of π. Moreover, we include into
both parts a compact description of π given by a balanced binary tree containing
edges of π, and mark the edges on π as scanned.

Division edges do not cross so each time we take new edge e = (a, b) it
will be contained in one part of P . Moreover, the scanned edges lie only on the
boundary of this part and as a consequence each edge belongs to one compact
representation of some path that goes on the boundary. Observe that a vertex on
the boundary may belong to at most two compact representations. If it belongs
to two compact representations it is the end vertex in both these path. Hence,
each time we detect that a vertex belongs to two compact representations we
can join them to form one. This takes O(log r) time.

To find the shortest path π corresponding to a division edge we start a linear
walk using Klein’s algorithm. When we find an edge that was already scanned
we look on the compact representation of the path ρ which the edge belongs to.
Using binary search we find an edge (x, y) on ρ that can belong to the shortest
path from a to b. To check if (x, y) can be on the path from a to b, we use
Klein’s data structure to check if the next edge on the path from x to b is equal
to (x, y). Both parts obtained by splitting along π will contain ρ ∩ π on their
border. However, because ρ was already on the border in one of these parts,
all internally shared vertices of ρ ∩ π will have degree 2. Observe that we can
represent the subpaths of ρ∩π in this part as a single edge of length equal to the
length of ρ ∩ π. Hence, the compact representation of subpaths of ρ ∩ π will be
needed only in the other part. Extracting the compact representation for each
shared subpath takes O(log r) time.

This splitting procedure means that each edge will be contained in at most
two compact representations of the path. Hence, the total size of the data struc-
tures used is bounded by the size of the piece P . To bound the running time
of this procedure we need to bound the number of binary searches performed
in piece P . We join consecutive compact representations that lie on the border
so each binary search needs to end with an unscanned edge. Hence, we will not
perform more binary searches then there are edges in the piece. Moreover, the
number of joins and splits performed on compact representations is bounded
by the number of binary searches. The cost of each operation is O(log r), so
the time needed for splitting each piece using the edges of the second type is
O(r log r). This gives O(n log r) total time over the whole graph. On the other
hand, splitting according to the first type edges requires O(n) time in total.

If we excluded the time needed for performing binary searches, the above
algorithm would run in O(n). Consequently, the total number of vertices in all
graphs GR is O(n).



C Answering Dynamic Queries

In order to answer queries we execute the divide and conquer algorithm both on
structure A and B. As previously, the description of the algorithm follows the
structure of Section 3.

The main data structure for us is structure A and we use its r-division as
we did in Section 5. The regions and division edges are defined with respect to
structure A as well. As previously, we start the recursion with one region which
is given by the skeleton graph. However, we continue the recursion till we obtain
regions containing a single cycle.

Dividing Step In each recursive call we first find a shortest path tree T in the
dense distance graph for the r-division in structure A. Such tree can be con-
structed in O(n5/6 log2 n) time using Corollary 1.

We build a planar graph F by taking the union of edges of the skeleton
graph GP and T . Next, we build a spanning tree SF of its dual by taking edges
corresponding to edges from the skeleton graph. In contrary to Section 5, we
assign to all vertices of SF weights 1. The total weight is W = |F (SF )|. Now,
we find a vertex w in SF such that the total weight of its subtree is at least
W
2 and the weight of subtrees rooted in all its children is smaller than W

2 . Let
d0, d1, d2, · · · , dk be the edges incident to w, listed in circular ordering, where d0
is the edge connecting w to its parent. We aim to find a sequence of consecutive
children, whose total weight is between W

4 and 3W
4 . Since the weights are smaller

than W
2 , there exists some l ∈ {1, 2, · · · , k} such that the total weight of subtrees

connected to w with d1, d2, · · · , dl satisfies the required inequalities.

Let d′0, d
′
1, · · · , d′l be primal edges corresponding to d0, d1, · · · , dl. We select

those two endpoints of d1 and dl which are closer to d0 in the circular ordering
around the face w and connect them with an edge e (see Fig. 6).

Fig. 6. The face of the skeleton graph, which w belongs to. The boundary of the face
is marked with a dashed line. The edges of the shortest paths tree are drawn in bold.
A part of the dual tree SF is marked with thin solid segments.



The edge e determines a fundamental cycle Ce in T . Ce consists of two
shortest subpaths Qab and Qac and the edge e = bc. Let CP be the cycle of
infinite weight edges that bounds P . Vertices b and c split CP into two paths P1

and P2.

Fig. 7. Cycles C1 and C2. The interior of C1 is dark gray, whereas the interior of C1

is light gray.

The paths Qab and Qac when combined with P1 or P2 give two cycles. Let C1

be the smaller one, and let C2 be the bigger one (see Fig. 7). These two cycles
divide the graph into three regions int(C1), P = ext(C1)∩ int(C2) and ext(C2).
We only need to recurse our procedure onto int(C1) and ext(C2). Note that the
shortest cycle contained fully inside P is maintained by our dynamic algorithm
and we can simply look it up.

It remains to show how to split our structures A and B when recursing.
Consider a piece P ′ and its dense distance graph DP ′ . In Section 5.1 we ar-
gued that for all pieces but one we do not need to recompute dense distance
graphs. However, now we cannot afford to do so at all. Instead we will simply
use the dense distance graph for the original non-divided piece, i.e., we will set
DP ′∩int(C1) = DP ′ ∩ int(C1) and DP ′∩ext(C2) = DP ′ ∩ ext(C2). Note that now
distances in, e.g., DP ′∩int(C1) may be different from distances in P ′ ∩ int(C1).
However, they can only be shorter in the case when the corresponding shortest
path in P ′ leaves P ′∩int(C1). As we argued in Section 4, this will not change the
result of the algorithm, i.e., the shortest cycle found only might become shorter,
but it exists in the original graph. The distances in the dense distance graphs
might not correspond to distances in the pieces, but they do correspond to paths
in the original graph.

This implies that we can actually use cycle C1 and C2 to split both structures
A and B into two parts. Our selection of these cycles guarantees that both
int(C1) and ext(C2) contain a constant fraction of faces of F .

Conquering Step We are left to show how to find shortest cycles that cross
C1 or C2. Note that such cycles need to cross one of Qab, Qac, P1 and P2. In
order to find shortest cycles crossing path Qab and Qac we find faces incident
to their ends and apply Lemma 2. On the other hand, a cycle that crosses P1



or P2 has to contain an edge incident to CP . By the assumption that the graph
has constant degree there are at most O(n1/6) such edges, because P contains
O(n1/6) border nodes. For each such edge E we dispatch a query shortest-cycle(e)

to the structure B. This takes O(n1/6n2/3 log5/3) = O(n5/6 log5/3 n) time in
total.

Reducing Step In this query answering algorithm we use the same reducing
procedure for structures A and B as we used in Section 5.3. Hence, Lemma 3
implies that the total number of vertices in all regions in every recursion level is
O(n5/6) for structure A and O(n2/3 log2/3 n) for structure B. In every recursive
call we divide the graph F into two parts, both containing a constant fraction of
faces. However, the shortest paths tree is recomputed at the beginning of every
recursive call. This does not affect the depth of the recursion, as F contains the
same number of faces, regardless of what the shortest paths tree looks like. This
implies that there are O(log n) levels of the recursion and the total running of
the procedure is dominated by structure A and is O(n5/6 log3 n).

Terminal Step We run the recursion until the current region represents a single
cycle. In the terminal step, it remains to compute its length.


