Abstract
We consider the problem of approximating the smallest 2-vertex connected spanning subgraph (2-VCSS) of a 2-vertex connected directed graph, and explore the efficiency of fast heuristics. First, we present a linear-time heuristic that gives a 3-approximation of the smallest 2-VCSS. Then we show that this heuristic can be combined with an algorithm of Cheriyan and Thurimella that achieves a (1 + 1/k)-approximation of the smallest k-VCSS. The combined algorithm preserves the 1.5 approximation guarantee of the Cheriyan-Thurimella algorithm for k = 2 and improves its running time from O(m 2) to \(O(m\sqrt{n}+n^2)\), for a digraph with n vertices and m arcs. Finally, we present an experimental evaluation of the above algorithms for a variety of input data. The experimental results show that our linear-time heuristic achieves in practice a much better approximation ratio than 3, suggesting that a tighter analysis may be possible. Furthermore, the experiments show that the combined algorithm not only improves the running time of the Cheriyan-Thurimella algorithm, but it may also compute a smaller 2-VCSS.
Research funded by the John S. Latsis Public Benefit Foundation. The sole responsibility for the content of this paper lies with its authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice-Hall, Inc., Upper Saddle River (1993)
Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM Journal on Computing 28(6), 2117–2132 (1999)
Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM Journal on Computing 38(4), 1533–1573 (2008)
Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected spanning subgraphs via matching. SIAM J. Comput. 30(2), 528–560 (2000)
Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph partitioning with natural cuts. In: 25th International Parallel and Distributed Processing Symposium, IPDPS 2011 (2011)
Diestel, R.: Graph Theory, 2nd edn. Springer, New York (2000)
Edmonds, J.: Edge-disjoint branchings. Combinatorial Algorithms, 91–96 (1972)
Gabow, H.N., Gallagher, S.: Iterated rounding algorithms for the smallest k-edge connected spanning subgraph. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 550–559 (2008)
Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph matching problems. J. ACM 38, 815–853 (1991)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Garg, N., Santosh, V.S., Singla, A.: Improved approximation algorithms for biconnected subgraphs via better lower bounding techniques. In: Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 103–111 (1993)
Georgiadis, L.: Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths in digraphs. In: Proc. 37th Int’l. Coll. on Automata, Languages, and Programming, pp. 738–749 (2010)
Georgiadis, L., Tarjan, R.E.: Finding dominators revisited. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms, pp. 862–871 (2004)
Georgiadis, L., Tarjan, R.E.: Dominator tree verification and vertex-disjoint paths. In: Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pp. 433–442 (2005)
Georgiadis, L., Tarjan, R.E., Werneck, R.F.: Finding dominators in practice. Journal of Graph Algorithms and Applications (JGAA) 10(1), 69–94 (2006)
Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. Journal of the ACM 35, 921–940 (1988)
Hopcroft, J.E., Karp, R.M.: An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM Journal on Computing 2, 225–231 (1973)
Italiano, G., Laura, L., Santaroni, F.: Finding strong bridges and strong articulation points in linear time. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 157–169. Springer, Heidelberg (2010)
Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems 1(1), 121–141 (1979)
Mader, W.: Minimal n-fach zusammenhängende digraphen. Journal of Combinatorial Theory, Series B 38(2), 102–117 (1985)
Nutov, Z.: An almost O(logk)-approximation for k-connected subgraphs. In: Proc. 20th ACM-SIAM Symp. on Discrete Algorithms, SODA 2009, pp. 912–921 (2009)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26, 362–391 (1983)
Stanford network analysis platform (snap), http://snap.stanford.edu/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Georgiadis, L. (2011). Approximating the Smallest 2-Vertex Connected Spanning Subgraph of a Directed Graph. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)