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Abstract

We give a memoryless scale-invariant randomized algorithm Mix-R

for buffer management with bounded delay that is e/(e − 1)-competitive
against an adaptive adversary, together with better performance guar-
antees for many restricted variants, including the s-bounded instances.
In particular, Mix-R attains the optimum competitive ratio of 4/3 on
2-bounded instances.

Both Mix-R and its analysis are applicable to a more general problem,
called Collecting Items, in which only the relative order between packets’
deadlines is known. Mix-R is the optimal memoryless randomized algo-
rithm against adaptive adversary for that problem in a strong sense.

While some of provided upper bounds were already known, in general,
they were attained by several different algorithms.

1 Introduction

In this paper, we consider the problem of buffer management with bounded
delay, introduced by Kesselman et al. [16]. This problem models the behavior of
a single network switch responsible for scheduling packet transmissions along an
outgoing link as follows. We assume that time is divided into unit-length steps.
At the beginning of a time step, any number of packets may arrive at a switch
and be stored in its buffer. Each packet has a positive weight, corresponding
to the packets priority, and a deadline, which specifies the latest time when the
packet can be transmitted. Only one packet from the buffer can be transmitted
in a single step. A packet is removed from the buffer upon transmission or
expiration, i.e., reaching its deadline. The goal is to maximize the gain, defined
as the total weight of the packets transmitted.

We note that buffer management with bounded delay is equivalent to a schedul-
ing problem in which packets are represented as jobs of unit length, with given
release times, deadlines and weights; release times and deadlines are restricted
to integer values. In this setting, the goal is to maximize the total weight of
jobs completed before their respective deadlines.
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As the process of managing packet queue is inherently a real-time task, we
model it as an online problem. This means that the algorithm, when deciding
which packets to transmit, has to base its decision solely on the packets which
have already arrived at a switch, without the knowledge of the future.

1.1 Competitive Analysis

To measure the performance of an online algorithm, we use the standard notion
of competitive analysis [6], which, roughly speaking, compares the gain of the
algorithm to the gain of the optimal solution on the same instance. For any
algorithm Alg, we denote its gain on instance I by GAlg(I). The optimal
offline algorithm is denoted by Opt. We say that a deterministic algorithm
Alg is R-competitive if on any instance I it holds that GAlg(I) ≥ 1

R
· GOpt(I).

When analyzing the performance of an online algorithm Alg, we view the
process as a game between Alg and an adversary. The adversary controls what
packets are injected into the buffer and chooses which of them to send. The
goal is then to show that the adversary’s gain is at most R times Alg’s gain.

If the algorithm is randomized, we consider its expected gain, E[GAlg(I)],
where the expectation is taken over all possible random choices made by Alg.
However, in the randomized case, the power of the adversary has to be further
specified. Following Ben-David et al. [3], we distinguish between an oblivious
and an adaptive-online adversary, which from now on we will call adaptive, for
short. An oblivious adversary has to construct the whole instance in advance.
This instance may depend on Alg but not on the random bits used by Alg dur-
ing the computation. The expected gain of Alg is compared to the gain of the
optimal offline solution on I. In contrast, in case of an adaptive adversary, the
choice of packets to be injected into the buffer may depend on the algorithm’s
behavior up to the given time step. This adversary must also provide an an-
swering entity Adv, which creates a solution in parallel to Alg. This solution
may not be changed afterwards. We say that Alg is R-competitive against an
adaptive adversary if for any adaptively created instance I and any answering
algorithm Adv, it holds that E[GAlg(I)] ≥ 1

R
· E[GAdv(I)]. We note that Adv

is (wlog) deterministic, but as Alg is randomized, so is the instance I.
In the literature on online algorithms [6], the definition of the competitive

ratio sometimes allows an additive constant, i.e., a deterministic algorithm is
then called R-competitive if there exists a constant α ≥ 0 such that for any
instance I it holds that GAlg(I) ≥ 1

R
· GOpt(I) − α. An analogous definition

applies to the randomized case. For our algorithm Mix-R the bound holds for
α = 0, which is the best possible.

1.2 Basic Definitions

We denote a packet with weight w and relative deadline d by (w, d), where
the relative deadline of a packet is, at any time, the number of steps after
which it expires. The packet’s absolute deadline, on the other hand, is the exact
point in time at which the packet expires. a packet that is in the buffer, i.e.,
has already been released and has neither expired nor been transmitted by an
algorithm, is called pending for the algorithm. The lifespan of a packet is its
relative deadline value upon injection, or in other words the difference between
its absolute deadline and release time.
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The goal is to maximize the weighted throughput, i.e., the total weight of
transmitted packets. We assume that time is slotted in the following way. We
distinguish between points in time and time intervals, called steps. In step t,
corresponding to the interval (t, t + 1), Adv and the algorithm choose, inde-
pendently, a packet from their buffers and transmit it. The packet transmitted
by the algorithm (Adv) is immediately removed from the buffer and no longer
pending. Afterwards, at time t+ 1, the relative deadlines of all remaining pack-
ets are decremented by 1, and the packets whose relative deadlines reach 0
expire and are removed from both Adv’s and the algorithm’s buffers. Next, the
adversary injects any set of packets. At this point, we proceed to step t + 1.

To no surprise, all known algorithms are scale-invariant, which means that
they make the same decisions if all the weights of packets in an instance are
scaled by a positive constant. a class of further restricted algorithms is of special
interest for their simplicity. An algorithm is memoryless if in every step its
decision depends only on the set of packets pending at that step. An algorithm
that is both memoryless and scale-invariant is called memoryless scale-invariant.

1.3 Previous and Related Work, Restricted Variants

The currently best, 1.828-competitive, deterministic algorithm for general in-
stances was given by Englert and Westermann [10]. Their algorithm is scale-
invariant, but it is not memoryless. However, in the same article Englert and
Westermann provide another, 1.893-competitive, deterministic algorithm that is
memoryless scale-invariant. The best known randomized algorithm is the 1.582-
competitive memoryless scale-invariant RMix, proposed by Chin et al. [7]. For
reasons explained in Section 2.1 the original analysis by Chin et al. is only appli-
cable in the oblivious adversary model. However, a refined analysis shows that
the algorithm remains 1.582-competitive in the adaptive adversary model [14].

Consider a (memoryless scale-invariant) greedy algorithm that always trans-
mits the heaviest pending packet. It is not hard to observe that it is 2-competitive,
and actually no better than that. But for a few years no better deterministic
algorithm for the general case was known. This naturally led to a study of
many restricted variants. Below we present some of them, together with known
results. The most relevant bounds known are summarized in Table 1. Note that
the majority of algorithms are memoryless scale-invariant.

For a general overview of techniques and results on buffer management, see
the surveys by Azar [2], Epstein and Van Stee [11] and Goldwasser [12].

Uniform Sequences An instance is s-uniform if the lifespan of each packet is
exactly s. Such instances have been considered for two reasons. Firstly, there is
a certain connection between them and the FIFO model of buffer management,
also considered by Kesselmann et al. [16]. Secondly, the 2-uniform instances are
among the most elementary restrictions that do not make the problem trivial.
However, analyzing these sequences is not easy: while a simple deterministic
1.414-competitive algorithm for 2-uniform instances [18] is known to be optimal
among memoryless scale-invariant algorithms [7], for unrestricted algorithms
a sophisticated analysis shows the optimum competitive ratio is 1.377 [9].

Bounded Sequences An instance is s-bounded if the lifespan of each packet is
at most s; therefore every s-uniform instances is also s-bounded. This class of in-
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deterministic (rand.) adaptive (rand.) oblivious

general
upper 1.828 [10], 1.893∗ [10] 1.582∗ [14] 1.582∗ [7]
lower 1.618 1.333 1.25

s-bounded
upper 2− 2

s
+ o(1

s
)∗ [7] 1/

(

1 − (1 −

1

s
)s
)

∗

1/
(

1− (1− 1
s
)s
)∗

lower 1.618 1.333 1.25

2-bounded
upper 1.618∗ [16] 1.333∗ [5] 1.25∗ [7]
lower 1.618 [1, 8, 13] 1.333 [5] 1.25 [8]

Table 1: Comparison of known and new results. The results of this paper are
shown in boldface; a reference next to such entry means that this particular
bound was already known. The results without citations are implied by other
entries of the table. An asterisk denotes that the algorithm attaining the bound
is memoryless scale-invariant.

stances is important, because the strongest lower bounds on the competitive ra-
tio known for the problem employ 2-bounded instances. These are φ ≈ 1.618 for
deterministic algorithms [1, 8, 13], 1.25 for randomized algorithms in the obliv-
ious adversary model [8], and 4/3 in the adaptive adversary model [5]. For 2-
bounded instances algorithms matching these bounds are known [16, 7, 5]. A φ-
competitive deterministic algorithm is also known for 3-bounded instances [7],
but in general the best algorithms for s-bounded instances are only known to
be 2− 2/s + o(1/s)-competitive [7].

Similarly Ordered Sequences An instance is similarly ordered or has agree-
able deadlines if for every two packets i and j their spanning intervals are not
properly contained in one another, i.e., if ri < rj implies di ≤ dj . Note that
every 2-bounded instance is similarly ordered, as is every s-uniform instance,
for any s. An optimal deterministic φ-competitive algorithm [17] and a ran-
domized 4/3-competitive algorithm for the oblivious adversary model [15] are
known. With the exception of 3-bounded instances, this is the most general
class of instances for which a φ-competitive deterministic algorithm is known.

Other restrictions Among other possible restrictions, let us mention one
for which our algorithm provides some bounds. Motivated by certain trans-
mission protocols, which usually specify only several priorities for packets, one
might bound the number of different packet weights. In fact, Kesselmann et al.
considered deterministic algorithms for instances with only two distinct packet
weights [16].

Generalization: Collecting Weighted Items from a Dynamic Queue

Bienkowski et al. [4] studied a generalization of buffer management with bounded
delay, in which the algorithm knows only the relative order between packets’
deadlines rather than their exact values; after Bienkowski et al. we dub the
generalized problem Collecting Items. Their paper focuses on deterministic al-
gorithms but it does provide certain lower bounds for memoryless algorithms,
matched by our algorithm. See Appendix A for details.
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1.4 Our Contribution

We consider randomized algorithms against an adaptive adversary, motivated
by the following observation. In reality, traffic through a switch is not at all
independent of the packet scheduling algorithm. For example, lost packets are
typically resent, and throughput through a node affects the choice of routes for
data streams in a network. These phenomena can be captured by the adaptive
adversary model but not by the oblivious one. The adaptive adversary model
is also of its own theoretical interest and has been studied in numerous other
settings [6].

The main contribution of this paper is a simple memoryless scale-invariant
algorithm Mix-R, which may be viewed as RMix, proposed by Chin et al. [7],
with a different probability distribution over pending packets. The competitive
ratio of Mix-R is at most e/(e − 1) on the one hand, but on the other it is
provably better than that for many restricted variants of the problem. Some of
the upper bounds we provide were known before (cf. Table 1), but in general
they were achieved by several different algorithms.

Specifically, Mix-R is 1/
(

1− (1− 1
N

)N
)

-competitive against adaptive ad-
versary, where N is the maximum, over steps, number of packets that have
positive probability of transmission in the step. Note that 1/

(

1− (1− 1
N

)N
)

tends to e/(e − 1) from below. The number N can be bounded a priori in
certain restricted variants of the problem, thus giving better bounds for them,
as we discuss in detail in Section 2.4. For now let us mention that N ≤ s in
s-bounded instances and instances with at most s different packet weights. The
particular upper bound of 4/3 that we obtain for 2-bounded instances is tight
in the adaptive adversary model [5].

As is the case with RMix, both Mix-R and its analysis rely only on the rel-
ative order between the packets’ deadlines. Therefore our upper bound(s) apply
to the Collecting Items problem [4]. In fact, Mix-R is the optimum randomized
memoryless algorithm for that problem in a strong sense, cf. Appendix A.

2 General Upper Bound

2.1 Analysis technique

In our analysis, we follow the paradigm of modifying the adversary’s buffer,
introduced by Li et al. [17]. Namely, we assume that in each step the algorithm
and the adversary have precisely the same pending packets in their buffers. Once
they both transmit a packet, we modify the adversary’s buffer judiciously to
make it identical with that of the algorithm. This amortized analysis technique
leads to a streamlined and intuitive proof.

When modifying the buffer, we may have to let the adversary transmit an-
other packet, inject an extra packet to his buffer, or upgrade one of the packets in
its buffer by increasing its weight or deadline. We will ensure that these changes
will be advantageous to the adversary in the following sense: for any adversary
strategy Adv, starting with the current step and buffer content, there is an
adversary strategy Adv that continues computation with the modified buffer,
such that the total gain of Adv from the current step on (inclusive), on any
instance, is at least as large as that of Adv.
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To prove R-competitiveness, we show that in each step the expected amor-
tized gain of the adversary is at most R times the expected gain of the algorithm,
where the former is the total weight of the packets that Adv eventually trans-
mitted in this step. Both expected values are taken over random choices of the
algorithm.

We are going to assume that Adv never transmits a packet a if there is
another pending packet b such that transmitting b is always advantageous to
Adv. Formally, we introduce a dominance relation among the pending packets
and assume that Adv never transmits a dominated packet.

We say that a packet a = (wa, da) is dominated by a packet b = (wb, db) at
time t if at time t both a and b are pending, wa ≤ wb and da ≥ db. If one of
these inequalities is strict, we say that a is strictly dominated by b. We say that
packet a is (strictly) dominated whenever there exists a packet b that (strictly)
dominates it. Then the following fact can be shown by a standard exchange
argument.

Fact 1. For any adversary strategy Adv, there is a strategy Adv with the
following properties:

1. the gain of Adv on every sequence is at least the gain of Adv,

2. in every step t, Adv does not transmit a strictly dominated packet at
time t.

Proof. Adv can be transformed into Adv iteratively: take the minimum t0 such
that Adv first violates the second property in step t0, and transform Adv into
an algorithm Adv

′ with gain no smaller than that of Adv, which satisfies the
second property up to step t0, possibly violating it in further steps.

Let t0 be the first step in which the second property is violated. Let y =
(w, d) be the packet transmitted by Adv and x = (w′, d′) be the packet that
dominates y; then w′ ≥ w and d′ ≤ d. Let Adv

′ transmit the same packets as
Adv up to step t0 − 1, but in step t0 let it transmit x, and in the remaining
steps let it try to transmit the same packets as Adv. It is impossible in one case
only: when Adv transmits x in some step t. But then d ≥ d′ > t, so let Adv

′

transmit y, still pending at t. Clearly, the gain of Adv
′ is at least as large as

the gain of Adv.

Let us stress that Fact 1 holds for the adaptive adversary model. Now
we give an example of another simplifying assumption, often assumed in the
oblivious adversary model, which seems to break down in the adaptive adversary
model. In the oblivious adversary model the instance is fixed in advance by the
adversary, so Adv may precompute the optimum schedule to the instance and
follow it. Moreover, by standard exchange argument for the fixed set of packets
to be transmitted, Adv may always send the packet with the smallest deadline
from that set—this is usually called the earliest deadline first (EDF) property
or order. This assumption not only simplifies analyses of algorithms but is often
crucial for them to yields desired bounds [7, 9, 17, 15].

In the adaptive adversary model, however, the following phenomenon occurs:
as the instance I is randomized, Adv does not know for sure which packets it
will transmit in the future. Consequently, deprived of that knowledge, it cannot
ensure any specific order of packet transmissions.
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2.2 The Algorithm

We describe the algorithm’s behavior in a single step.

Algorithm 1 Mix-R (single step)

1: if there are no pending packets then
2: do nothing and proceed to the next step
3: end if
4: m← 0 ⊲ counts packets that are not strictly dominated
5: n← 0 ⊲ counts packets with positive probability assigned
6: r ← 1 ⊲ unassigned probability
7: H0 ← pending packets
8: h0 = (w0, d0)← heaviest packet from H0

9: while Hm 6= ∅ do
10: m← m + 1
11: hm = (wm, dm)← heaviest not strictly dominated packet from Hm−1

12: pm−1 ← min{1− wm

wm−1
, r}

13: r ← r − pm−1

14: if r > 0 then
15: n← n + 1
16: end if
17: Hm ← {x ∈ Hm−1 | x is not dominated by hm}
18: end while
19: pm ← r
20: transmit h chosen from h1, . . . , hn with probability distribution p1, . . . , pn
21: proceed to the next step

We introduce the packet h0 to shorten Mix-R’s pseudocode by making it
possible to set the value of p1 in the first iteration of the loop. The packet itself
is chosen in such a way that p0 = 0, to make it clear that it is not considered
for transmission (unless h0 = h1). The while loop itself could be terminated as
soon as r = 0, because afterwards Mix-R does not assign positive probability
to any packet. However, letting it construct the whole sequence h1, h2, . . . hm

such that Hm = ∅ simplifies our analysis. Before proceeding with the analysis,
we note a few facts about Mix-R.

Fact 2. The sequence of packets h0, h1, . . . , hm selected by Mix-R satisfies

w0 = w1 > w2 > · · · > wm ,

d1 > d2 > · · · > dm .

Furthermore, every pending packet is dominated by one of h1, . . . , hm.

Fact 3. The numbers p1, p2, . . . , pm form a probability distribution such that

pi ≤ 1−
wi+1

wi

for all i < m . (1)

Furthermore, the bound is tight for i < n, while pi = 0 for i > n, i.e.,

pi =

{

1− wi+1

wi
, for i < n

0, for i > n
(2)
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Theorem 4. Mix-R is 1/
(

1− (1− 1
N

)N
)

-competitive against an adaptive ad-
versary, where N is the maximum, over steps, number of packets that are as-
signed positive probability in a step.

Proof. For a given step, we describe the changes to Adv’s scheduling decisions
and modifications to its buffer that make it the same as Mix-R’s buffer. Then,
to prove our claim, we will show that

E [GAdv] ≤ w1 , (3)

E [GMix-R] ≥ w1

(

1− (1−
1

n
)n
)

, (4)

where n is the number of packets assigned positive probability in the step. The
theorem follows by summation over all steps.

Recall that, by Fact 1, Adv (wlog) sends a packet that is not strictly dom-
inated. By Fact 2, the packets h1, h2, . . . hm dominate all pending packets, so
the one sent by Adv, say p is (wlog) one of h1, h2, . . . hm: if p is dominated by
hi, but not strictly dominated, then p has the same weight and deadline as hi.

We begin by describing modifications to Adv’s buffer and estimate Adv’s
amortized gain. To this end we need to fix the packet sent by Mix-R, so let us
assume it is hf = (wf , df ). Assume that Adv transmits a packet hz = (wz , dz).
We will denote the adversary’s amortized gain given the latter assumption by

G
(z)
Adv

. We consider two cases.

Case 1: df ≤ dz. Then wf ≤ wz , since hz is not dominated. After both Adv

and Mix-R transmit their packets, we replace hf in the buffer of Adv

by a copy of hz. This way their buffers remain the same afterwards, and
the change is advantageous to Adv: this is essentially an upgrade of the
packet hf in its buffer, as both df ≤ dz and wf ≤ wz hold.

Case 2: df > dz. After both Adv and Mix-R transmit their packets, we let
Adv additionally transmit hf , and we inject a copy of hz into its buffer,
both of which are clearly advantageous to Adv. This makes the buffers
of Adv and Mix-R identical afterwards.

We start by proving (3), the bound on the adversary’s expected amortized
gain. Note that Adv always gains wz, and if dz < df (z > f), it additionally
gains wf . Thus, when Adv transmits hz, its expected amortized gain is

E

[

G
(z)
Adv

]

= wz +
∑

i<z

piwi . (5)

As the adversary’s expected amortized gain satisfies

E [GAdv] ≤ max
1≤i≤m

{

E

[

G
(i)
Adv

]}

,

to establish (3), we will prove that

max
1≤i≤m

{

E

[

G
(i)
Adv

]}

≤ G
(1)
Adv

= w1 . (6)

The equality in (6) follows trivially from (5). To see that the inequality in (6)
holds as well, observe that, by (5), for all j < m,

E

[

G
(i)
Adv

]

− E

[

G
(i+1)
Adv

]

= wi − wi+1 − piwi ≥ 0 , (7)
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where the inequality follows from (1).
Now we turn to (4), the bound on the expected gain of Mix-R in a single

step. Obviously,

E [GMix-R] =

n
∑

i=1

piwi . (8)

By (2), piwi = wi − wi+1 for all i < n. Also, pn = 1 −
∑

i<n pi, by Fact 3.
Making corresponding substitutions in (8) yields

E [GMix-R] =

(

n−1
∑

i=1

(wi − wi+1)

)

+

(

1−
n−1
∑

i=1

pi

)

wn

= w1 − wn

n−1
∑

i=1

pi . (9)

As (2) implies wi = wi−1(1 − pi−1) for all i ≤ n, we can express wn as

wn = w1

n−1
∏

i=1

(1 − pi) . (10)

Substituting (10) for wn in (9), we obtain

E [GMix-R] = w1

(

1−
n−1
∏

i=1

(1− pi)

n−1
∑

i=1

pi

)

. (11)

Note that
n−1
∑

i=1

(1− pi) +

(

n−1
∑

i=1

pi

)

= n− 1 ,

and therefore the inequality between arithmetic and geometric means yields

n−1
∏

i=1

(1− pi)

n−1
∑

i=1

pi ≤ (1−
1

n
)n . (12)

Plugging (12) into (11) yields

E [GMix-R] ≥ w1

(

1− (1−
1

n
)n
)

,

which proves (4), and together with (3), the whole theorem.

2.3 Rationale behind the probability distribution

Recall that the upper bound on the competitive ratio of Mix-R is

max1≤z≤m{E
[

G
(z)
Adv

]

}

E [GMix-R]
, (13)

irrespective of the choice of p1, . . . , pm.
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The particular probability distribution used in Mix-R is chosen to (heuristi-
cally) minimize above ratio by maximizing E [GMix-R], while keeping (6) satisfied,

i.e., keeping E [GAdv] ≤ G
(1)
Adv

= w1.
The first goal is trivially achieved by setting p1 ← 1. This however makes

E

[

G
(z)
Adv

]

> w1 for all z > 1. Therefore, some of the probability mass is trans-

ferred to p2, p3, . . . in the following way. To keep E [GMix-R] as large as possible,
p2 is greedily set to its maximum, if there is any unassigned probability left, p3

is set to its maximum, and so on. As E

[

G
(z)
Adv

]

does not depend on pi for i ≥ z,

the values E
[

G
(z)
Adv

]

can be equalized with w1 sequentially, with z increasing, un-

til there is no unassigned probability left. Equalizing E

[

G
(j)
Adv

]

with E

[

G
(j−1)
Adv

]

consists in setting pj−1 ← 1− wj

wj−1
, as shown in (7). The same inequality shows

what is intuitively clear: once there is no probability left and further values

E

[

G
(z)
Adv

]

cannot be equalized, they are only smaller than w1.

The lower bound for the Collecting Items problem [4], presented in Ap-
pendix A, proves that this heuristic does minimize (13).

2.4 Implications for Restricted Variants

We have already mentioned that for s-bounded instances or those with at most
s different packet weights, N ≤ m ≤ s in Theorem 4, which trivially follows
from Fact 2. Thus for either kind of instances Mix-R is 1/

(

1− (1− 1
s
)s
)

-
competitive. In particular, on 2-bounded instances Mix-R coincides with the
previously known optimal 4/3-competitive algorithm Rand [5] for the adaptive
adversary model.

Sometimes it may be possible to give more sophisticated bounds on N , and
consequently on the competitive ratio for particular variant of the problem, as
we now explain. The reason for considering only the packets h0, h1, . . . , hm is
clear: by Fact 1 and Fact 2, Adv (wlog) transmits one of them. Therefore,
Mix-R tries to mimic Adv’s behavior by adopting a probability distribution
over these packets (recall that in the analysis the packets pending for Mix-R

and Adv are exactly the same) that keeps the maximum, over Adv’s choices,
expected amortized gain of Adv and its own expected gain as close as possible
(cf. Section 2.3). Now, if for whatever reason we know that Adv is going to
transmit a packet from some set S, then H0 can be initialized to S rather than
all pending packets, and Theorem 4 will still hold. And as the upper bound
guaranteed by Theorem 4 depends on N , it might improve if the cardinality of
S is small.

While it seems unlikely that bounds for any restricted variant other than
s-bounded instances or instances with at most s different packet weights can
be obtained this way, there is one interesting example that shows it is possi-
ble. For similarly ordered instances (aka instances with agreeable deadlines)
and oblivious adversary one can always find such set S of cardinality at most
2 [15, Lemma 2.7]; while not explicitly stated, this fact was proved before by
Li et al. [17]. Roughly, the set S contains the earliest-deadline and the heaviest
packet from any optimal provisional schedule. The latter is the optimal schedule
under the assumption that no further packets are ever injected, and as such can
be found in any step.
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3 Conclusion and Open Problems

While Mix-R is very simple to analyze, it subsumes almost all previously known
randomized algorithms for packet scheduling and provides new bounds for sev-
eral restricted variants of the problem. One notable exception is the optimum
algorithm against oblivious adversary for 2-bounded instances [7]. This exposes
that the strength of our analysis, i.e., applicability to adaptive adversary model,
is most likely a weakness at the same time. The strongest lower bounds on com-
petitive ratio for oblivious and adaptive adversary differ. And as both are tight
for 2-bounded instances, it seems impossible to obtain an upper bound smaller
than 4/3 on the competitive ratio of Mix-R for any non-trivial restriction of
the problem in the oblivious adversary model.

In both the algorithm and its analysis it is the respective order of packets’
deadlines rather than their exact values that matter. Therefore, our results
are also applicable to the Collecting Items problem [4], briefly described in
Section 1.3. As mentioned in Section 1.4, Mix-R is the optimum randomized
memoryless algorithm for Collecting Items, cf. Appendix A.

Therefore, to beat either the general bound of e/(e − 1), or any of the
1/
(

1− (1− 1
s
)s
)

bounds for s-bounded instances for buffer management with
bounded delay, one either needs to consider algorithms that are not memory-
less scale-invariant, or better utilize the knowledge of exact deadlines—in the
analysis at least, if not in the algorithm itself.

Last but not least, let us remark again that Mix-R and its analysis might au-
tomatically provide better bounds for further restricted variants of the problem,
provided that some insight allows to confine the adversary’s choice of packets
for transmission in a step, while knowing which packets are pending for it—one
such example is the algorithm for similarly ordered instances (aka instances with
agreeable deadlines) [15], as we discussed in Section 2.4.
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A Lower Bound for Collecting Items

In this section, for completeness, we evoke the lower bound on the Collecting
Items problem [4]. As the proof is omitted in the original article due to space
constraints, and the original theorem statement therein is not parametrized by
N , we restate the theorem.

Theorem 5 (Theorem 6.3 of [4]). For every randomized memoryless algorithm
for the Collecting Items problem, there is an adaptive adversary’s strategy using
at most N different packet weights such that the algorithm’s competitive ratio
against the strategy is at least 1/

(

1− (1− 1
N

)N
)

, and at every step the algorithm
has at most N packets in its queue.

Below we present the original proof from [4].

Proof. Fix some online memoryless randomized algorithm A, and consider the
following scheme. Let a > 1 be a constant, which we specify later, and let
n = N − 1 At the beginning, the adversary inserts items a0, a1, . . . , an into the
queue, in this order. (To simplify notation, in this proof we identify items with
their weights.) In our construction we maintain the invariant that in each step,
the list of items pending for A is equal to a0, a1, . . . , an. Since A is memoryless,
in each step it uses the same probability distribution (qj)

n
j=0, where qj is the

probability of collecting item aj . Moreover,
∑n

i=0 qi = 1, as without loss of
generality the algorithm always makes a move.

We consider n+1 strategies for an adversary, numbered 0, 1, . . . , n. The k-th
strategy is as follows: in each step collect ak, delete items a0, a1, . . . , ak, and
then issue new copies of these items. Additionally, if A collected aj for some
j > k, then the adversary issues a new copy of aj as well. This way, in each step
exactly one copy of each aj is pending for A, while the adversary accumulates
in its pending set copies of the items aj , for j > k, that were collected by A.

This step is repeated T ≫ n times, and after the last step both the adversary
and the algorithm collect all their pending items. Since T ≫ n, we only need
to focus on the expected amortized profits (defined below) in a single step.

We look at the gains of A and the adversary in a single step. If the adversary
chooses strategy k, then it gains ak. Additionally, at the end it collects the item
collected by the algorithm if this item is greater than ak. Thus, its amortized
expected gain in a single step is ak +

∑

i>k qia
i. The expected gain of A is

∑

i qia
i.

For any probability distribution (qj)
n
j=0 of the algorithm, the adversary

chooses a strategy k which maximizes the competitive ratio. Thus, the compet-
itive ratio of A is is at least

R = max
k

{

ak +
∑

j>k qja
j

∑

j qja
j

}

≥
∑

k

vk
ak +

∑

j>k qja
j

∑

j qja
j

, (14)

for any coefficients v0, . . . , vn ≥ 0 such that
∑

k vk = 1. Let M = an+1−n(a−1).
For k = 0, 1, ..., n, we choose

vk =

{

1
M
an−k(a− 1), if k < n ,

1
M

(a − n(a− 1), ) if k = n .

13



The choice of these values may seem somewhat mysterious, but it’s in fact quite
simple—it is obtained by considering A’s distributions where qj = 1 for some j
(and thus when A is deterministic), assuming that the resulting lower bounds
on the right-hand side of (14) are equal, and solving the resulting system of
equations.

For these values of vk we obtain

MR
n
∑

j=0

qja
j ≥

n
∑

k=0

Mvka
k +

n
∑

k=0

Mvk
∑

j>k

qja
j

=

n−1
∑

k=0

Mvka
k + Mvna

n +

n
∑

j=0

qja
j
∑

k<j

Mvk

= n(a− 1)an + [a − n(a− 1)]an +
n
∑

j=0

qj(a
j − 1)an+1

= an+1 + an+1
n
∑

j=0

qja
j − an+1

n
∑

j=0

qj

= an+1 + an+1
n
∑

j=0

qja
j − an+1

= an+1
n
∑

j=0

qja
j .

Therefore, R ≥ an+1/M . This bound is maximized for a = 1 + 1/n, in which
case we get

R ≥

(

1 + 1
n

)n+1

(

1 + 1
n

)n+1
− 1

=

(

1 + 1
N−1

)N

(

1 + 1
N−1

)N

− 1

=
1

1−
(

1− 1
N

)N
,

completing the proof.
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