Abstract
We study frequency allocation in wireless networks. A wireless network is modeled by an undirected graph, with vertices corresponding to cells. In each vertex we have a certain number of requests, and each of those requests must be assigned a different frequency. Edges represent conflicts between cells, meaning that frequencies in adjacent vertices must be different as well. The objective is to minimize the total number of used frequencies.
The offline version of the problem is known to be NP-hard. In the incremental version, requests for frequencies arrive over time and the algorithm is required to assign a frequency to a request as soon as it arrives. Competitive incremental algorithms have been studied for several classes of graphs. For paths, the optimal (asymptotic) ratio is known to be 4/3, while for hexagonal-cell graphs it is between 1.5 and 1.9126. For ξ-colorable graphs, the ratio of (ξ + 1)/2 can be achieved.
In this paper, we prove nearly tight bounds on the asymptotic competitive ratio for bipartite graphs, showing that it is between 1.428 and 1.433. This improves the previous lower bound of 4/3 and upper bound of 1.5. Our proofs are based on reducing the incremental problem to a purely combinatorial (equivalent) problem of constructing set families with certain intersection properties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aardal, K., van Hoesel, S.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies 1, 261–317 (2003)
Chan, J.W.-T., Chin, F.Y.L., Ye, D., Zhang, Y.: Online frequency allocation in cellular networks. In: SPAA 2007, pp. 241–249 (2007)
Chan, J.W.-T., Chin, F.Y.L., Ye, D., Zhang, Y.: Absolute and asymptotic bounds for online frequency allocation in cellular networks. Algorithmica 58, 498–515 (2010)
Chan, J.W.-T., Chin, F.Y.L., Ye, D., Zhang, Y., Zhu, H.: Frequency allocation problems for linear cellular networks. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 61–70. Springer, Heidelberg (2006)
Chin, F.Y.L., Zhang, Y., Zhu, H.: A 1-Local 13/9-Competitive Algorithm for Multicoloring Hexagonal Graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 526–536. Springer, Heidelberg (2007)
Chrobak, M., Sgall, J.: Three results on frequency assignment in linear cellular networks. Theoretical Computer Science 411, 131–137 (2010)
McDiarmid, C., Reed, B.: Channel assignment and weighted colouring. Networks 36, 114–117 (2000)
Murphey, R.A., Pardalos, P.M., Resende, M.G.C.: Frequency assignment problems. In: Handbook of Combinatorial Optimization, pp. 295–377. Kluwer Academic Publishers, Dordrecht (1999)
Narayanan, L., Shende, S.M.: Static frequency assignment in cellular networks. Algorithmica 29, 396–409 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chrobak, M., Jeż, Ł., Sgall, J. (2011). Better Bounds for Incremental Frequency Allocation in Bipartite Graphs. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)