Skip to main content

Two-Bounded-Space Bin Packing Revisited

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

  • 2692 Accesses

Abstract

We analyze approximation algorithms for bounded-space bin packing by comparing them against the optimal bounded-space packing (instead of comparing them against the globally optimal packing that does not necessarily satisfy the bounded-space constraint). For 2-bounded-space bin packing we construct a polynomial time offline approximation algorithm with asymptotic worst case ratio 3/2, and we show a lower bound of 5/4 for this scenario. We show that no 2-bounded-space online algorithm can have an asymptotic worst case ratio better than 4/3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coffman Jr., E.G., Csirik, J., Woeginger, G.J.: Approximate solutions to bin packing problems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 607–615. Oxford University Press, New York (2002)

    Google Scholar 

  2. Csirik, J., Imreh, B.: On the worst-case performance of the NkF bin packing heuristic. Acta Cybernetica 9, 89–105 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Csirik, J., Johnson, D.S.: Bounded space on-line bin packing: Best is better than first. Algorithmica 31, 115–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Garey, M.R., Johnson, D.S: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    Google Scholar 

  5. Lee, C.C., Lee, D.T.: A simple on-line bin-packing algorithm. Journal of the ACM 32, 562–572 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mao, W.: Tight worst-case performance bounds for Next-k-Fit bin packing. SIAM Journal on Computing 22, 46–56 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Woeginger, G.J.: Improved space for bounded-space, on-line bin-packing. SIAM Journal on Discrete Mathematics 6, 575–581 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chrobak, M., Sgall, J., Woeginger, G.J. (2011). Two-Bounded-Space Bin Packing Revisited. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics