Abstract
We prove that in an n-vertex graph, an induced planar subgraph of maximum size can be found in time O(1.7347n). This is the first algorithm breaking the trivial 2n n O(1) bound of the brute-force search algorithm for the Maximum Induced Planar Subgraph problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angelsmark, O., Thapper, J.: Partitioning based algorithms for some colouring problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 44–58. Springer, Heidelberg (2006)
Bouchitté, V., Mazoit, F., Todinca, I.: Chordal embeddings of planar graphs. Discr. Math. 273(1-3), 85–102 (2003)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)
Buneman, P.: A characterization of rigid circuit graphs. Discr. Math. 9, 205–212 (1974)
Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. In: An EATCS Series: Texts in Theoretical Computer Science, Springer, Heidelberg (2010)
Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)
Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. Journal of Graph Theory 51(1), 53–81 (2006)
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.-Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)
Gapers, S., Kratch, D., Liedloff, M.: On independent sets and bicliques in graphs. WG (2008); to appear. Preliminary version in WG
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completness. Freeman, New York (1979)
Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds. Phd thesis, University of Bergen (2008)
Gavril, F.: The intersection graphs of a path in a tree are exactly the chordal graphs. Journal of Combinatorial Theory 16, 47–56 (1974)
Gupta, S., Raman, V., Saurabh, S.: Fast exponential algorithms for maximum -regular induced subgraph problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)
Kreweras, G.: Sur les partition non croisées d’un circle. Discr. Math. 1, 333–350 (1972)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)
Liebers, A.: Planarizing graphs - a survey and annotated bibliography. Journal of Graph Algorithms and Applications 5 (2001)
Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)
Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)
Robertson, N., Seymour, P.D.: Graphs minors. II. Algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fomin, F.V., Todinca, I., Villanger, Y. (2011). Exact Algorithm for the Maximum Induced Planar Subgraph Problem. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)