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Abstract In a scheduling problem, denoted by 1|prec|∑Ci in the Graham notation,
we are given a set of n jobs, together with their processing times and precedence con-
straints. The task is to order the jobs so that their total completion time is minimized.
1|prec|∑Ci is a special case of the Traveling Repairman Problem with precedences.
A natural dynamic programming algorithm solves both these problems in 2nnO(1)

time, and whether there exists an algorithms solving 1|prec|∑Ci in O(cn) time for
some constant c < 2 was an open problem posted in 2004 by Woeginger. In this paper
we answer this question positively.
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1 Introduction

It is commonly believed that no NP-hard problem is solvable in polynomial time.
However, while all NP-complete problems are equivalent with respect to polynomial
time reductions, they appear to be very different with respect to the best exponen-
tial time exact solutions. In particular, most NP-complete problems can be solved
significantly faster than the (generic for the NP class) obvious brute-force algorithm
that checks all possible solutions; examples are INDEPENDENT SET [11], DOMI-
NATING SET [11, 23], CHROMATIC NUMBER [4] and BANDWIDTH [8]. The area
of moderately exponential time algorithms studies upper and lower bounds for exact
solutions for hard problems. The race for the fastest exact algorithm inspired several
very interesting tools and techniques such as Fast Subset Convolution [3] and Mea-
sure&Conquer [11] (for an overview of the field we refer the reader to a recent book
by Fomin and Kratsch [10]).

For several problems, including TSP, CHROMATIC NUMBER, PERMANENT, SET

COVER, #HAMILTONIAN CYCLES and SAT, the currently best known time com-
plexity is of the form1 O∗(2n), which is a result of applying dynamic programming
over subsets, the inclusion-exclusion principle or a brute force search. The question
remains, however, which of those problems are inherently so hard that it is not pos-
sible to break the 2n barrier and which are just waiting for new tools and techniques
still to be discovered. In particular, the hardness of the k-SAT problem is the starting
point for the Strong Exponential Time Hypothesis of Impagliazzo and Paturi [15],
which is used as an argument that other problems are hard [7, 19, 22]. Recently, on
the positive side, O(cn) time algorithms for a constant c < 2 have been developed
for CAPACITATED DOMINATION [9], IRREDUNDANCE [1], MAXIMUM INDUCED

PLANAR SUBGRAPH [12] and (a major breakthrough in the field) for the undirected
version of the HAMILTONIAN CYCLE problem [2].

In this paper we extend this list by one important scheduling problem. The area
of scheduling algorithms originates from practical questions regarding scheduling
jobs on single- or multiple-processor machines or scheduling I/O requests. It has
quickly become one of the most important areas in algorithmics, with significant
influence on other branches of computer science. For example, the research of the
job-shop scheduling problem in 1960s resulted in designing the competitive analysis
[13], initiating the research of online algorithms. Up to today, the scheduling literature
consists of thousands of research publications. We refer the reader to the classical
textbook of Brucker [5].

Among scheduling problems one may find a bunch of problems solvable in poly-
nomial time, as well as many NP-hard ones. For example, the aforementioned job-
shop problem is NP-complete on at least three machines [17], but polynomial on two
machines with unitary processing times [14].

Scheduling problems come in numerous variants. For example, one may consider
scheduling on one machine, or many uniform or non-uniform machines. The jobs can
have different attributes: they may arrive at different times, may have deadlines or
precedence constraints, preemption may or may not be allowed. There are also many

1The O∗( ) notation suppresses factors polynomial in the input size.
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objective functions, for example the makespan of the computation, total completion
time, total lateness (in case of deadlines for jobs) etc.

Let us focus on the case of a single machine. Assume we are given a set of jobs
V , and each job v has its processing time t (v) ∈ [0,+∞). For a job v, its completion
time is the total amount of time that this job waited to be finished; formally, the
completion time of a job v is defined as the sum of processing times of v and all
jobs scheduled earlier. If we are to minimize the total completion time (i.e, the sum
of completion times over all jobs), it is clear that the jobs should be scheduled in
order of increasing processing times. The question of minimizing the makespan of the
computation (i.e., maximum completion time) is obvious in this setting, but we note
that minimizing makespan is polynomially solvable even if we are given a precedence
constraints on the jobs (i.e., a partial order on the set of jobs is given, and a job cannot
be scheduled before all its predecessors in the partial order are finished) and jobs
arrive at different times (i.e., each job has its arrival time, before which it cannot be
scheduled) [16].

Lenstra and Rinnooy Kan [18] in 1978 proved that the question of minimizing total
completion time on one machine becomes NP-complete if we are given precedence
constraints on the set of jobs. To the best of our knowledge the currently smallest ap-
proximation ratio for this case equals 2, due to independently discovered algorithms
by Chekuri and Motwani [6] as well as Margot et al. [20]. The problem of minimiz-
ing total completion time on one machine, given precedence constraints on the set of
jobs, can be solved by a standard dynamic programming algorithm in time O∗(2n),
where n denotes the number of jobs. In this paper we break the 2n-barrier for this
problem.

Before we start, let us define formally the considered problem. As we focus on
a single scheduling problem, for brevity we denote it by SCHED. We note that the
proper name of this problem in the Graham notation is 1|prec|∑Ci .

SCHED
Input: A partially ordered set of jobs (V ,≤), together with a nonnegative process-
ing time t (v) ∈ [0,+∞) for each job v ∈ V .
Task: Compute a bijection σ : V → {1,2, . . . , |V |} (called an ordering) that sat-
isfies the precedence constraints (i.e., if u < v, then σ(u) < σ(v)) and minimizes
the total completion time of all jobs defined as

T (σ ) =
∑

v∈V

∑

u:σ(u)≤σ(v)

t (u) =
∑

v∈V

(|V | − σ(v) + 1
)
t (v).

If u < v for u,v ∈ V (i.e., u ≤ v and u �= v), we say that u precedes v, u is a
predecessor or prerequisite of v, u is required for v or that v is a successor of u. We
denote |V | by n.

SCHED is a special case of the precedence constrained Traveling Repairman
Problem (prec-TRP), defined as follows. A repairman needs to visit all vertices of a
(directed or undirected) graph G = (V ,E) with distances d : E → [0,∞) on edges.
At each vertex, the repairman is supposed to repair a broken machine; a cost of a
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machine v is the time Cv that it waited before being repaired. Thus, the goal is to
minimize the total repair time, that is,

∑
v∈V Cv . Additionally, in the precedence

constrained case, we are given a partial order (V ,≤) on the set of vertices of G;
a machine can be repaired only if all its predecessors are already repaired. Note that,
given an instance (V ,≤, t) of SCHED, we may construct equivalent prec-TRP in-
stance, by taking G to be a complete directed graph on the vertex set V , keeping the
precedence constraints unmodified, and setting d(u, v) = t (v).

The TRP problem is closely related to the Traveling Salesman Problem (TSP). All
these problems are NP-complete and solvable in O∗(2n) time by an easy application
of the dynamic programming approach (here n stands for the number of vertices in the
input graph). In 2010, Björklund [2] discovered a genuine way to solve probably the
easiest NP-complete version of the TSP problem—the question of deciding whether
a given undirected graph is Hamiltonian—in randomized O(1.66n) time. However,
his approach does not extend to directed graphs, not even mentioning graphs with
distances defined on edges.

Björklund’s approach is based on purely graph-theoretical and combinatorial rea-
sonings, and seem unable to cope with arbitrary (large, real) weights (distances,
processing times). This is also the case with many other combinatorial approaches.
Probably motivated by this, Woeginger at International Workshop on Parameterized
and Exact Computation (IWPEC) in 2004 [24] has posed the question (repeated in
2008 [25]), whether it is possible to construct an O((2 − ε)n) time algorithm for the
SCHED problem.2 This problem seems to be the easiest case of the aforementioned
family of TSP-related problems with arbitrary weights. In this paper we present
such an algorithm, thus affirmatively answering Woeginger’s question. Woeginger
also asked [24, 25] whether an O((2 − ε)n) time algorithm for one of the problems
TRP, TSP, prec-TRP, SCHED implies O((2 − ε)n) time algorithms for the other
problems. This problem is still open.

The most important ingredient of our algorithm is a combinatorial lemma
(Lemma 2.6) which allows us to investigate the structure of the SCHED problem.
We heavily use the fact that we are solving the SCHED problem and not its more
general TSP related version, and for this reason we believe that obtaining O((2−ε)n)

time algorithms for other problems listed by Woeginger is much harder.

2 The Algorithm

2.1 High-Level Overview—Part 1

Let us recall that our task in the SCHED problem is to compute an ordering σ : V →
{1,2, . . . , n} that satisfies the precedence constraints (i.e., if u < v then σ(u) < σ(v))
and minimizes the total completion time of all jobs defined as

T (σ ) =
∑

v∈V

∑

u:σ(u)≤σ(v)

t (u) =
∑

v∈V

(
n − σ(v) + 1

)
t (v).

2Although Woeginger in his papers asks for an O(1.99n) algorithm, the intention is clearly to ask for an
O((2 − ε)n) algorithm.
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We define the cost of job v at position i to be T (v, i) = (n − i + 1)t (v). Thus, the
total completion time is the total cost of all jobs at their respective positions in the
ordering σ .

We begin by describing the algorithm that solves SCHED in O�(2n) time, which
we call the DP algorithm—this will be the basis for our further work. The idea—a
standard dynamic programming over subsets—is that if we decide that a particular
set X ⊆ V will (in some order) form the prefix of our optimal σ , then the order in
which we take the elements of X does not affect the choices we make regarding
the ordering of the remaining V \ X; the only thing that matters are the precedence
constraints imposed by X on V \ X. Thus, for each candidate set X ⊆ V to form a
prefix, the algorithm computes a bijection σ [X] : X → {1,2, . . . , |X|} that minimizes
the cost of jobs from X, i.e., it minimizes T (σ [X]) = ∑

v∈X T (v,σ [X](v)). The
value of T (σ [X]) is computed using the following easy to check recursive formula:

T (σ [X]) = min
v∈max(X)

[
T

(
σ
[
X \ {v}]) + T

(
v, |X|)]. (1)

Here, by max(X) we mean the set of maximum elements of X—those which do not
precede any element of X. The bijection σ [X] is constructed by prolonging σ [X\{v}]
by v, where v is the job at which the minimum is attained. Notice that σ [V ] is exactly
the ordering we are looking for. We calculate σ [V ] recursively, using formula (1),
storing all computed values σ [X] in memory to avoid recomputation. Thus, as the
computation of a single σ [X] value given all the smaller values takes polynomial
time, while σ [X] for each X is computed at most once the whole algorithm indeed
runs in O�(2n) time.

The overall idea of our algorithm is to identify a family of sets X ⊆ V that—
for some reason—are not reasonable prefix candidates, and we can skip them in the
computations of the DP algorithm; we will call these unfeasible sets. If the number of
feasible sets is not larger than cn for some c < 2, we will be done—our recursion will
visit only feasible sets, assuming T (σ [X]) to be ∞ for unfeasible X in formula (1),
and the running time will be O�(cn). This is formalized in the following proposition.

Proposition 2.1 Assume we are given a polynomial-time algorithm R that, given
a set X ⊆ V , either accepts it or rejects it. Moreover, assume that the number of
sets accepted by R is bounded by O(cn) for some constant c. Then one can find in
time O�(cn) an optimal ordering of the jobs in V among those orderings σ where
σ−1({1,2, . . . , i}) is accepted by R for all 1 ≤ i ≤ n, whenever such ordering exists.

Proof Consider the following recursive procedure to compute optimal T (σ [X]) for
a given set X ⊆ V :

1. if X is rejected by R, return T (σ [X]) = ∞;
2. if X = ∅, return T (σ [X]) = 0;
3. if T (σ [X]) has been already computed, return the stored value of T (σ [X]);
4. otherwise, compute T (σ [X]) using formula (1), calling recursively the procedure

itself to obtain values T (σ [X\{v}]) for v ∈ max(X), and store the computed value
for further use.
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Clearly, the above procedure, invoked on X = V , computes optimal T (σ [V ]) among
those orderings σ where σ−1({1,2, . . . , i}) is accepted by R for all 1 ≤ i ≤ n. It is
straightforward to augment this procedure to return the ordering σ itself, instead of
only its cost.

If we use balanced search tree to store the computed values of σ [X], each recursive
call of the described procedure runs in polynomial time. Note that the last step of the
procedure is invoked at most once for each set X accepted by R and never for a set X

rejected by R. As an application of this step results in at most |X| ≤ n recursive calls,
we obtain that a computation of σ [V ] using this procedure results in the number of
recursive calls bounded by n times the number of sets accepted by R. The time bound
follows. �

2.2 The Large Matching Case

We begin by noticing that the DP algorithm needs to compute σ [X] only for those
X ⊆ V that are downward closed, i.e., if v ∈ X and u < v then u ∈ X. If there are
many constraints in our problem, this alone will suffice to limit the number of feasible
sets considerably, as follows. Construct an undirected graph G with the vertex set V

and edge set E = {uv : u < v ∨ v < u}. Let M be a maximum matching3 in G,
which can be found in polynomial time [21]. If X ⊆ V is downward closed, and
uv ∈ M, u < v, then it is not possible that u /∈ X and v ∈ X. Obviously checking
if a subset is downward closed can be performed in polynomial time, thus we can
apply Proposition 2.1, accepting only downward closed subsets of V . This leads to
the following lemma:

Lemma 2.2 The number of downward closed subsets of V is bounded by 2n−2|M| ×
3|M|. If |M| ≥ ε1n, then we can solve the SCHED problem in time

T1(n) = O�
(
(3/4)ε1n2n

)
.

Note that for any small positive constant ε1 the complexity T1(n) is of required
order, i.e., T1(n) = O(cn) for some c < 2 that depends on ε1. Thus, we only have to
deal with the case where |M| < ε1n.

Let us fix a maximum matching M, let M ⊆ V be the set of endpoints of M, and
let I1 = V \ M . Note that, as M is a maximum matching in G, no two jobs in I1 are
bound by a precedence constraint, and |M| ≤ 2ε1n, |I1| ≥ (1 − 2ε1)n. See Fig. 1 for
an illustration.

2.3 High-Level Overview—Part 2

We are left in the situation where there is a small number of “special” elements (M),
and the bulk remainder (I1), consisting of elements that are tied by precedence con-
straints only to M and not to each other.

3Even an inclusion-maximal matching, which can be found greedily, is enough.
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Fig. 1 An illustration of the
case left after Lemma 2.2. In
this and all further figures, an
arrow points from the successor
job to the predecessor one

First notice that if M was empty, the problem would be trivial: with no precedence
constraints we should simply order the tasks from the shortest to the longest. Now let
us consider what would happen if all the constraints between any u ∈ I1 and w ∈ M

would be of the form u < w—that is, if the jobs from I1 had no predecessors. For any
prefix set candidate X we consider XI = X ∩ I1. Now for any x ∈ XI , y ∈ I1 \XI we
have an alternative prefix candidate: the set X′ = (X∪{y})\ {x}. If t (y) < t(x), there
has to be a reason why X′ is not a strictly better prefix candidate than X—namely,
there has to exist w ∈ M such that x < w, but y �< w.

A similar reasoning would hold even if not all of I1 had no predecessors, but
just some constant fraction J of I—again, the only feasible prefix candidates would
be those in which for every x ∈ XI ∩ J and y ∈ J \ XI there is a reason (either
t (x) < t(y) or an element w ∈ M which requires x, but not y) not to exchange them.
It turns out that if |J | > ε2n, where ε2 > 2ε1, this observation suffices to prove that
the number of possible intersections of feasible sets with J is exponentially smaller
than 2|J |. This is formalized and proved in Lemma 2.6, and is the cornerstone of the
whole result.

A typical application of this lemma is as follows: say we have a set K ⊆ I1 of
cardinality |K| > 2j , while we know for some reason that all the predecessors of
elements of K appear on positions j and earlier. If K is large (a constant fraction
of n), this is enough to limit the number of feasible sets to (2 − ε)n. To this end it
suffices to show that there are exponentially fewer than 2|K| possible intersections of
a feasible set with K . Each such intersection consists of a set of at most j elements
(that will be put on positions 1 through j ), and then a set in which every element
has a reason not to be exchanged with something from outside the set—and there are
relatively few of those by Lemma 2.6—and when we do the calculations, it turns out
the resulting number of possibilities is exponentially smaller than 2|K|.

To apply this reasoning, we need to be able to tell that all the prerequisites of a
given element appear at some position or earlier. To achieve this, we need to know
the approximate positions of the elements in M . We achieve this by branching into
4|M| cases, for each element w ∈ M choosing to which of the four quarters of the set
{1, . . . , n} will σopt (w) belong. This incurs a multiplicative cost4 of 4|M|, which will
be offset by the gains from applying Lemma 2.6.

We will now repeatedly apply Lemma 2.6 to obtain information about the positions
of various elements of I1. We will repeatedly say that if “many” elements (by which

4Actually, this bound can be improved to 10|M|/2, as M are endpoints of a matching in the graph corre-
sponding to the set of precedences.
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we always mean more than εn for some ε) do not satisfy something, we can bound
the number of feasible sets, and thus finish the algorithm. For instance, look at those
elements of I1 which can appear in the first quarter, i.e., none of their prerequisites
appear in quarters two, three and four. If there is more than ( 1

2 + δ)n of them for
some constant δ > 0, we can apply the above reasoning for j = n/4 (Lemma 2.10).
Subsequent lemmata bound the number of feasible sets if there are many elements
that cannot appear in any of the two first quarters (Lemma 2.8), if less than ( 1

2 − δ)n

elements can appear in the first quarter (Lemma 2.10) and if a constant fraction of
elements in the second quarter could actually appear in the first quarter (Lemma 2.11).
We also apply similar reasoning to elements that can or cannot appear in the last
quarter.

We end up in a situation where we have four groups of elements, each of size
roughly n/4, split upon whether they can appear in the first quarter and whether they
can appear in the last one; moreover, those that can appear in the first quarter will not
appear in the second, and those that can appear in the fourth will not appear in the
third. This means that there are two pairs of parts which do not interact, as the set
of places in which they can appear are disjoint. We use this independence of sorts to
construct a different algorithm than the DP we used so far, which solves our problem
in this specific case in time O�(23n/4+ε) (Lemma 2.12).

As can be gathered from this overview, there are many technical details we will
have to navigate in the algorithm. This is made more precarious by the need to
carefully select all the epsilons. We decided to use symbolic values for them in
the main proof, describing their relationship appropriately, using four constants εk ,
k = 1,2,3,4. The constants εk are very small positive reals, and additionally εk is
much smaller than εk+1 for k = 1,2,3. At each step, we shortly discuss the exis-
tence of such constants. We discuss the choice of optimal values of these constants in
Sect. 2.9, although the value we perceive in our algorithm lies rather in the existence
of an O�((2 − ε)n) algorithm than in the value of ε (which is admittedly very small).

2.4 Technical Preliminaries

We start with a few simplifications. First, we add a few dummy jobs with no prece-
dence constraints and zero processing times, so that n is divisible by four. Second,
by slightly perturbing the jobs’ processing times, we can assume that all processing
times are pairwise different and, moreover, each ordering has different total com-
pletion time. This can be done, for instance, by replacing time t (v) with a pair
(t (v), (n + 1)π(v)−1), where π : V → {1,2, . . . , n} is an arbitrary numbering of V .
The addition of pairs is performed coordinatewise, whereas comparison is performed
lexicographically. Note that this in particular implies that the optimal solution is
unique, we denote it by σopt . Third, at the cost of an n2 multiplicative overhead,
we guess the jobs vbegin = σ−1

opt (1) and vend = σ−1
opt (n) and we add precedence con-

straints vbegin < v < vend for each v �= vbegin, vend . If vbegin or vend were not in M

to begin with, we add them there.
A number of times our algorithm branches into several subcases, in each branch

assuming some property of the optimal solution σopt . Formally speaking, in each
branch we seek the optimal ordering among those that satisfy the assumed property.
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We somewhat abuse the notation and denote by σopt the optimal solution in the cur-
rently considered subcase. Note that σopt is always unique within any subcase, as
each ordering has different total completion time.

For v ∈ V by pred(v) we denote the set {u ∈ V : u < v} of predecessors of v,
and by succ(v) we denote the set {u ∈ V : v < u} of successors of v. We extend this
notation to subsets of V : pred(U) = ⋃

v∈U pred(v) and succ(U) = ⋃
v∈U succ(v).

Note that for any set U ⊆ I1, both pred(U) and succ(U) are subsets of M .
In a few places in this paper we use the following simple bound on binomial

coefficients that can be easily proven using the Stirling’s formula.

Lemma 2.3 Let 0 < α < 1 be a constant. Then
(

n

αn

)

= O∗
((

1

αα(1 − α)1−α

)n)

.

In particular, if α �= 1/2 then there exists a constant cα < 2 that depends only on α

and
(

n

αn

)

= O∗(cn
α

)
.

2.5 The Core Lemma

We now formalize the idea of exchanges presented at the beginning of Sect. 2.3.

Definition 2.4 Consider some set K ⊆ I1, and its subset L ⊆ K . If there exists u ∈ L

such that for every w ∈ succ(u) we can find vw ∈ (K ∩ pred(w)) \ L with t (vw) <

t(u) then we say L is succ-exchangeable with respect to K , otherwise we say L is
non-succ-exchangeable with respect to K .

Similarly, if there exists v ∈ (K \ L) such that for every w ∈ pred(v) we can find
uw ∈ L ∩ succ(w) with t (uw) > t(v), we call L pred-exchangeable with respect to
K , otherwise we call it non-pred-exchangeable with respect to K .

Whenever it is clear from the context, we omit the set K with respect to which its
subset is or is not pred- or succ-exchangeable.

Let us now give some more intuition on the exchangeable sets. Let L be a non-
succ-exchangeable set with respect to K ⊆ I1 and let u ∈ L. By the definition, there
exists w ∈ succ(u), such that for all vw ∈ (K ∩ pred(w)) \ L we have t (vw) ≥ t (u);
in other words, all predecessors of w in K that are scheduled after L have larger
processing time than u—which seems like a “correct” choice if we are to optimize
the total completion time.

On the other hand, let L = σ−1
opt ({1,2, . . . , i}) ∩ K for some 1 ≤ i ≤ n and assume

that L is a succ-exchangeable set with respect to K with a job u ∈ L witnessing
this fact. Let w be the job in succ(u) that is scheduled first in the optimal ordering
σopt . By the definition, there exists vw ∈ (K ∩ pred(w)) \ L with t (vw) < t(u). It is
tempting to decrease the total completion time of σopt by swapping the jobs vw and
u in σopt : by the choice of w, no precedence constraint involving u will be violated
by such an exchange, so we need to care only about the predecessors of vw .
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Fig. 2 Figure illustrating the succ-exchangeable case of Lemma 2.5. Gray circles indicate positions of
elements of K , black contour indicates that an element is also in L. Black squares indicate positions of
elements from pred(K), and black circles—positions of other elements from M

We formalize the aforementioned applicability of the definition of pred- and succ-
exchangeable sets in the following lemma:

Lemma 2.5 Let K ⊆ I1. If for all v ∈ K,x ∈ pred(K) we have that σopt (v) >

σopt (x), then for any 1 ≤ i ≤ n the set K ∩ σ−1
opt ({1,2, . . . , i}) is non-succ-

exchangeable with respect to K .
Similarly, if for all v ∈ K,x ∈ succ(K) we have σopt (v) < σopt (x), then the sets

K ∩ σ−1
opt ({1,2, . . . , i}) are non-pred-exchangeable with respect to K .

Proof The proofs for the first and the second case are analogous. However, to help
the reader get intuition on exchangeable sets, we provide them both in full detail. See
Fig. 2 for an illustration on the succ-exchangeable case.

Non-succ-exchangeable sets. Assume, by contradiction, that for some i the set
L = K ∩ σ−1

opt ({1,2, . . . , i}) is succ-exchangeable. Let u ∈ L be a job witnessing it.
Let w be the successor of u with minimum σopt (w) (there exists one, as vend ∈
succ(u)). By Definition 2.4, we have vw ∈ (K ∩ pred(w)) \ L with t (vw) < t(u).
As vw ∈ K \ L, we have σopt (vw) > σopt (u). As vw ∈ pred(w), we have σopt (vw) <

σopt (w).
Consider an ordering σ ′ defined as σ ′(u) = σopt (vw), σ ′(vw) = σopt (u) and

σ ′(x) = σopt (x) if x /∈ {u,vw}; in other words, we swap the positions of u and vw

in the ordering σopt . We claim that σ ′ satisfies all the precedence constraints. As
σopt (u) < σopt (vw), σ ′ may only violates constraints of the form x < vw and u < y.
However, if x < vw , then x ∈ pred(K) and σ ′(vw) = σopt (u) > σopt (x) = σ ′(x)

by the assumptions of the Lemma. If u < y, then σ ′(y) = σopt (y) ≥ σopt (w) >

σopt (vw) = σ ′(u), by the choice of w. Thus σ ′ is a feasible solution to the considered
SCHED instance. Since t (vw) < t(u), we have T (σ ′) < T (σopt ), a contradiction.

Non-pred-exchangeable sets. Assume, by contradiction, that for some i the set
L = K ∩ σ−1

opt ({1,2, . . . , i}) is pred-exchangeable. Let v ∈ (K \ L) be a job witness-
ing it. Let w be the predecessor of v with maximum σopt (w) (there exists one, as
vbegin ∈ pred(v)). By Definition 2.4, we have uw ∈ L ∩ succ(w) with t (uw) > t(v).
As uw ∈ L, we have σopt (uw) < σopt (v). As uw ∈ succ(w), we have σopt (uw) >

σopt (w).
Consider an ordering σ ′ defined as σ ′(v) = σopt (uw), σ ′(uw) = σopt (v) and

σ ′(x) = σopt (x) if x /∈ {v,uw}; in other words, we swap the positions of v and uw

in the ordering σopt . We claim that σ ′ satisfies all the precedence constraints. As
σopt (uw) < σopt (v), σ ′ may only violates constraints of the form x > uw and v > y.
However, if x > uw , then x ∈ succ(K) and σ ′(uw) = σopt (v) < σopt (x) = σ ′(x)
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by the assumptions of the Lemma. If v > y, then σ ′(y) = σopt (y) ≤ σopt (w) <

σopt (uw) = σ ′(v), by the choice of w. Thus σ ′ is a feasible solution to the considered
SCHED instance. Since t (uw) > t(v), we have T (σ ′) < T (σopt ), a contradiction. �

Lemma 2.5 means that if we manage to identify a set K satisfying the assumptions
of the lemma, the only sets the DP algorithm has to consider are the non-exchangeable
ones. The following core lemma proves that there are few of those (provided that K

is big enough), and we can identify them easily.

Lemma 2.6 For any set K ⊆ I1 the number of non-succ-exchangeable (non-
pred-exchangeable) subsets with regard to K is at most

∑
l≤|M|

(|K|
l

)
. Moreover,

there exists an algorithm which checks whether a set is succ-exchangeable (pred-
exchangeable) in polynomial time.

The idea of the proof is to construct a function f that encodes each non-
exchangeable set by a subset of K no larger than M . To show this encoding is in-
jective, we provide a decoding function g and show that g ◦ f is an identity on non-
exchangeable sets.

Proof As in Lemma 2.5, the proofs for succ- and pred-exchangeable sets are analo-
gous, but for the sake or clarity we include both proofs in full detail.

Non-succ-exchangeable sets. For any set Y ⊆ K we define the function fY : M →
K ∪ {nil} as follows: for any element w ∈ M we define fY (w) (the least expen-
sive predecessor of w outside Y ) to be the element of (K \ Y) ∩ pred(w) which
has the smallest processing time, or nil if (K \ Y) ∩ pred(w) is empty. We now
take f (Y ) (the set of the least expensive predecessors outside Y ) to be the set
{fY (w) : w ∈ M} \ {nil}. We see that f (Y ) is indeed a set of cardinality at most |M|.

Now we aim to prove that f is injective on the family of non-succ-exchangeable
sets. To this end we define the reverse function g. For a set Z ⊆ K (which we think of
as the set of the least expensive predecessors outside some Y ) let g(Z) be the set of
such elements v of K that there exists w ∈ succ(v) such that for any zw ∈ Z∩pred(w)

we have t (zw) > t(v). Notice, in particular, that g(Z) ∩ Z = ∅, as for v ∈ Z and
w ∈ succ(v) we have v ∈ Z ∩ pred(w).

First we prove g(f (Y )) ⊆ Y for any Y ⊆ K . Take any v ∈ K \ Y and consider
any w ∈ succ(v). Then fY (w) �= nil and t (fY (w)) ≤ t (v), as v ∈ (K \ Y) ∩ pred(w).
Thus v /∈ g(f (Y )), as for any w ∈ succ(v) we can take a witness zw = fY (w) in the
definition of g(f (Y )).

In the other direction, let us assume that Y does not satisfy Y ⊆ g(f (Y )). This
means we have u ∈ Y \ g(f (Y )). Then we show that Y is succ-exchangeable. Con-
sider any w ∈ succ(u). As u /∈ g(f (Y )), by the definition of the function g applied to
the set f (Y ), there exists zw ∈ f (Y )∩pred(w) with t (zw) ≤ t (u). But f (Y )∩Y = ∅,
while u ∈ Y ; and as all the values of t are distinct, t (zw) < t(u) and zw satisfies the
condition for vw in the definition of succ-exchangeability.

Non-pred-exchangeable sets. For any set Y ⊆ K we define the function fY : M →
K ∪ {nil} as follows: for any element w ∈ M we define fY (w) (the most expensive
successor of w in Y ) to be the element of Y ∩ succ(w) which has the largest pro-
cessing time, or nil if Y ∩ succ(w) is empty. We now take f (Y ) (the set of the most
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expensive successors in Y ) to be the set {fY (w) : w ∈ M} \ {nil}. We see that f (Y ) is
indeed a set of cardinality at most |M|.

Now we aim to prove that f is injective on the family of non-pred-exchangeable
sets. To this end we define the reverse function g. For a set Z ⊆ K (which we think
of as the set of most expensive successors in some Y ) let g(Z) be the set of such
elements v of K that for any w ∈ pred(v) there exists a zw ∈ Z ∩ succ(w) with
t (zw) ≥ t (v). Notice, in particular, that g(Z) ⊆ Z, as for v ∈ Z the job zw = v is a
good witness for any w ∈ pred(v).

First we prove Y ⊆ g(f (Y )) for any Y ⊆ K . Take any v ∈ Y and consider any
w ∈ pred(v). Then fY (w) �= nil and t (fY (w)) ≥ t (v), as v ∈ Y ∩ succ(w). Thus
v ∈ g(f (Y )), as for any w ∈ pred(v) we can take zw = fY (w) in the definition of
g(f (Y )).

In the other direction, let us assume that Y does not satisfy g(f (Y )) ⊆ Y . This
means we have v ∈ g(f (Y )) \ Y . Then we show that Y is pred-exchangeable. Con-
sider any w ∈ pred(v). As v ∈ g(f (Y )), by the definition of the function g applied
to the set f (Y ), there exists zw ∈ f (Y ) ∩ succ(w) with t (zw) ≥ t (v). But f (Y ) ⊆ Y ,
while v �∈ Y ; and as all the values of t are distinct, t (zw) > t(v) and zw satisfies the
condition for uw in the definition of pred-exchangeability.

Thus, in both cases, if Y is non-exchangeable then g(f (Y )) = Y (in fact it is
possible to prove in both cases that Y is non-exchangeable iff g(f (Y )) = Y ). As there
are

∑|M|
l=0

(|K|
l

)
possible values of f (Y ), the first part of the lemma is proven. For the

second, it suffices to notice that succ- and pred-exchangeability can be checked in
time O(|K|2|M|) directly from the definition. �

Example 2.7 To illustrate the applicability of Lemma 2.6, we analyze the following
very simple case: assume the whole set M \ {vbegin} succeeds I1, i.e., for every w ∈
M \ {vbegin} and v ∈ I1 we have w �< v. If ε1 is small, then we can use the first
case of Lemma 2.5 for the whole set K = I1: we have pred(K) = {vbegin} and we
only look for orderings that put vbegin as the first processed job. Thus, we can apply
Proposition 2.1 with algorithm R that rejects sets X ⊆ V where X ∩ I1 is succ-
exchangeable with respect to I1. By Lemma 2.6, the number of sets accepted by R is
bounded by 2|M| ∑

l≤|M|
(|I1|

l

)
, which is small if |M| ≤ ε1n.

2.6 Important Jobs at n/2

As was already mentioned in the overview, the assumptions of Lemma 2.5 are quite
strict; therefore, we need to learn a bit more on how σopt behaves on M in order to
distinguish a suitable place for an application. As |M| ≤ 2ε1n, we can afford branch-
ing into few subcases for every job in M .

Let A = {1,2, . . . , n/4}, B = {n/4 + 1, . . . , n/2}, C = {n/2 + 1, . . . ,3n/4},
D = {3n/4 + 1, . . . , n}, i.e., we split {1,2, . . . , n} into quarters. For each w ∈
M \ {vbegin, vend} we branch into two cases: whether σopt (w) belongs to A ∪ B or
C ∪ D; however, if some predecessor (successor) of w has been already assigned to
C ∪ D (A ∪ B), we do not allow w to be placed in A ∪ B (C ∪ D). Of course, we
already know that σopt (vbegin) ∈ A and σopt (vend) ∈ D. Recall that the vertices of M

can be paired into a matching; since for each w1 < w2, w1,w2 ∈ M we cannot have
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Fig. 3 An illustration of the sets MAB , MCD , WAB
half and WCD

half

w1 placed in C ∪ D and w2 placed in A ∪ B , this branching leads to 3|M|/2 ≤ 3ε1n

subcases, and thus the same overhead in the time complexity. By the above proce-
dure, in all branches the guesses about alignment of jobs from M satisfy precedence
constraints inside M .

Now consider a fixed branch. Let MAB and MCD be the sets of elements of M to
be placed in A ∪ B and C ∪ D, respectively.

Let us now see what we can learn in a fixed branch about the behavior of σopt on
I1. Let

WAB
half = {

v ∈ I1 : ∃w

(
w ∈ MAB ∧ v < w

)}
,

WCD
half = {

v ∈ I1 : ∃w

(
w ∈ MCD ∧ w < v

)}
,

that is WAB
half (resp. WCD

half ) are those elements of I1 which are forced into the first (resp.
second) half of σopt by the choices we made about M (see Fig. 3 for an illustration). If
one of the Whalf sets is much larger than M , we have obtained a gain—by branching
into at most 3ε1n branches we gained additional information about a significant (much
larger than (log2 3)ε1n) number of other elements (and so we will be able to avoid
considering a significant number of sets in the DP algorithm). This is formalized in
the following lemma:

Lemma 2.8 Consider a fixed branch. If WAB
half or WCD

half has at least ε2n elements, then
the DP algorithm can be augmented to solve the instance in the considered branch in
time

T2(n) =
(

2(1−ε2)n +
(

n

(1/2 − ε2)n

)

+ 2ε2n

(
(1 − ε2)n

n/2

))

nO(1).

Proof We describe here only the case |WAB
half | ≥ ε2n. The second case is symmetrical.

Recall that the set WAB
half needs to be placed in A ∪ B by the optimal ordering

σopt . We use Proposition 2.1 with an algorithm R that accepts sets X ⊆ V such
that the set WAB

half \ X (the elements of WAB
half not scheduled in X) is of size at most

max(0, n/2 − |X|) (the number of jobs to be scheduled after X in the first half of the
jobs). Moreover, the algorithm R tests if the set X conforms with the guessed sets
MAB and MCD , i.e.:

|X| ≤ n/2 ⇒ MCD ∩ X = ∅,
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|X| ≥ n/2 ⇒ MAB ⊆ X.

Clearly, for any 1 ≤ i ≤ n, the set σ−1
opt ({1,2, . . . , i}) is accepted by R, as σopt places

MAB ∪ WAB
half in A ∪ B and MCD in C ∪ D.

Let us now estimate the number of sets X accepted by R. Any set X of size
larger than n/2 needs to contain WAB

half ; there are at most 2n−|WAB
half | ≤ 2(1−ε2)n such

sets. All sets of size at most n/2 − |WAB
half | are accepted by R; there are at most

n
(

n
(1/2−ε2)n

)
such sets. Consider now a set X of size n/2−α for some 0 ≤ α ≤ |WAB

half |.
Such a set needs to contain |WAB

half | − β elements of WAB
half for some 0 ≤ β ≤ α and

n/2 − |WAB
half | − (α − β) elements of V \ WAB

half . Therefore the number of such sets
(for all possible α) is bounded by:

|WAB
half |∑

α=0

α∑

β=0

( |WAB
half |

|WAB
half | − β

)(
n − |WAB

half |
n/2 − |WAB

half | − (α − β)

)

≤ n2 max
0≤β≤α≤|WAB

half |

(|WAB
half |
β

)(
n − |WAB

half |
n/2 + (α − β)

)

≤ n22|WAB
half |

(
n − |WAB

half |
n/2

)

≤ n22ε2n

(
(1 − ε2)n

n/2

)

.

The last inequality follows from the fact that the function x �→ 2x
(
n−x
n/2

)
is decreasing

for x ∈ [0, n/2]. The bound T2(n) follows.
�

Note that we have 3ε1n overhead so far, due to guessing placement of the jobs
from M . By Lemma 2.3,

(
(1−ε2)n

n/2

) = O((2 − c(ε2))
(1−ε2)n) and

(
n

(1/2−ε2)n

) = O((2 −
c′(ε2))

n), for some positive constants c(ε2) and c′(ε2) that depend only on ε2. Thus,
for any small fixed ε2 we can choose ε1 sufficiently small so that 3ε1nT2(n) = O(cn)

for some c < 2. Note that 3ε1nT2(n) is an upper bound on the total time spent on
processing all the considered subcases.

Let Whalf = WAB
half ∪ WCD

half and I2 = I1 \ Whalf. From this point we assume that
|WAB

half |, |WCD
half | ≤ ε2n, hence |Whalf| ≤ 2ε2n and |I2| ≥ (1 − 2ε1 − 2ε2)n. For each

v ∈ MAB ∪ WAB
half we branch into two subcases, whether σopt (v) belongs to A or B .

Similarly, for each v ∈ MCD ∪ WCD
half we guess whether σopt (v) belongs to C or D.

Moreover, we terminate branches which are trivially contradicting the constraints.
Let us now estimate the number of subcases created by this branch. Recall that the

vertices of M can be paired into a matching; since for each w1 < w2, w1,w2 ∈ M

we cannot have w1 placed in a later segment than w2; this gives us 10 options for
each pair w1 < w2. Thus, in total they are at most 10|M|/2 ≤ 10ε1n ways of placing
vertices of M into quarters without contradicting the constraints. Moreover, this step
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gives us an additional 2|Whalf| ≤ 22ε2n overhead in the time complexity for vertices in
Whalf. Overall, at this point we are considering at most 10ε1n22ε2nnO(1) subcases.

We denote the set of elements of M and Whalf assigned to quarter Γ ∈
{A,B,C,D} by MΓ and WΓ

half, respectively.

2.7 Quarters and Applications of the Core Lemma

In this section we try to apply Lemma 2.6 as follows: We look which elements of
I2 can be placed in A (the set P A) and which cannot (the set P ¬A). Similarly we
define the set P D (can be placed in D) and P ¬D (cannot be placed in D). For each
of these sets, we try to apply Lemma 2.6 to some subset of it. If we fail, then in the
next subsection we infer that the solutions in the quarters are partially independent
of each other, and we can solve the problem in time roughly O(23n/4). Let us now
proceed with a more detailed argumentation.

We define the following two partitions of I2:

P ¬A = {
v ∈ I2 : ∃w

(
w ∈ MB ∧ w < v

)}
,

P A = I2 \ P ¬A = {
v ∈ I2 : ∀w

(
w < v ⇒ w ∈ MA

)}
,

P ¬D = {
v ∈ I2 : ∃w

(
w ∈ MC ∧ w > v

)}
,

P D = I2 \ P ¬D = {
v ∈ I2 : ∀w

(
w > v ⇒ w ∈ MD

)}
.

In other words, the elements of P ¬A cannot be placed in A because some of their
requirements are in MB , and the elements of P ¬D cannot be placed in D because
they are required by some elements of MC (see Fig. 4 for an illustration). Note that
these definitions are independent of σopt , so sets P Δ for Δ ∈ {A,¬A,¬D,D} can
be computed in polynomial time. Let

pA = ∣
∣σopt

(
P A

) ∩ A
∣
∣,

pB = ∣
∣σopt

(
P ¬A

) ∩ B
∣
∣,

pC = ∣
∣σopt

(
P ¬D

) ∩ C
∣
∣,

pD = ∣
∣σopt

(
P D

) ∩ D
∣
∣.

Note that pΓ ≤ n/4 for every Γ ∈ {A,B,C,D}. As pA = n/4 − |MA ∪ WA
half|,

pD = n/4−|MD ∪WD
half|, these values can be computed by the algorithm. We branch

into (1 + n/4)2 further subcases, guessing the (still unknown) values pB and pC .
Let us focus on the quarter A and assume that pA is significantly smaller than

|P A|/2 (i.e., |P A|/2 − pa is a constant fraction of n). We claim that we can apply
Lemma 2.6 as follows. While computing σ [X], if |X| ≥ n/4, we can represent X ∩
P A as a disjoint sum of two subsets XA

A,XA
BCD ⊆ P A. The first one is of size pA, and

represents the elements of X ∩P A placed in quarter A, and the second represents the
elements of X ∩ P A placed in quarters B ∪ C ∪ D. Note that the elements of XA

BCD

have all predecessors in the quarter A, so by Lemma 2.5 the set XA
BCD has to be
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Fig. 4 An illustration of the sets PΔ for Δ ∈ {A,¬A,¬D,D} and their relation with the sets MΓ for
Γ ∈ {A,B,C,D}

Fig. 5 An illustration of the proof of Lemma 2.9 for (Γ,Δ) = (A,A)

non-succ-exchangeable with respect to P A \ XA
A ; therefore, by Lemma 2.6, we can

consider only a very narrow choice of XA
BCD . Thus, the whole part X ∩ P A can

be represented by its subset of cardinality at most pA plus some small information
about the rest. If pA is significantly smaller than |P A|/2, this representation is more
concise than simply remembering a subset of P A. Thus we obtain a better bound on
the number of feasible sets.

A symmetric situation arises when pD is significantly smaller than |P D|/2; more-
over, we can similarly use Lemma 2.6 if pB is significantly smaller than |P ¬A|/2 or
pC than |P ¬D|/2. This is formalized by the following lemma.

Lemma 2.9 If pΓ < |P Δ|/2 for some (Γ,Δ) ∈ {(A,A), (B,¬A), (C,¬D), (D,D)}
and ε1 ≤ 1/4, then the DP algorithm can be augmented to solve the remaining in-
stance in time bounded by

Tp(n) = 2n−|PΔ|
(|P Δ|

pΓ

)(
n

|M|
)

nO(1).

Proof We first describe in detail the case Δ = Γ = A, and, later, we shortly describe
the other cases that are proven analogously. An illustration of the proof is depicted
on Fig. 5.
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On a high-level, we want to proceed as in Proposition 2.1, i.e., use the standard
DP algorithm described in Sect. 2.1, while terminating the computation for some un-
feasible subsets of V . However, in this case we need to slightly modify the recursive
formula used in the computations, and we compute σ [X,L] for X ⊆ V , L ⊆ X∩P A.
Intuitively, the set X plays the same role as before, whereas L is the subset of X∩P A

that was placed in the quarter A. Formally, σ [X,L] is the ordering of X that attains
the minimum total cost among those orderings σ for which L = P A ∩σ−1(A). Thus,
in the DP algorithm we use the following recursive formula:

T (σ [X,L]) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minv∈max(X)[T (σ [X \ {v},L \ {v}]) + T (v, |X|)]
if |X| ≤ n/4 and L = X ∩ P A,

+∞ if |X| ≤ n/4 and L �= X ∩ P A,

minv∈max(X)\L[T (σ [X \ {v},L]) + T (v, |X|)]
otherwise.

In the next paragraphs we describe a polynomial-time algorithm R that accepts or
rejects pairs of subsets (X,L), X ⊆ V , L ⊆ X∩P A; we terminate the computation on
rejected pairs (X,L). As each single calculation of σ [X,L] uses at most |X| recursive
calls, the time complexity of the algorithm is bounded by the number of accepted
pairs, up to a polynomial multiplicative factor. We now describe the algorithm R.

First, given a pair (X,L), we ensure that we fulfill the guessed sets MΓ and WΓ
half,

Γ ∈ {A,B,C,D}, that is: E.g., we require MB,WB
half ⊆ X if |X| ≥ n/2 and (MB ∪

WB
half) ∩ X = ∅ if |X| ≤ n/4. We require similar conditions for other quarters A,

C and D. Moreover, we require that X is downward closed. Note that this implies
X ∩ P ¬A = ∅ if |X| ≤ n/4 and P ¬D ⊆ X if |X| ≥ 3n/4.

Second, we require the following:

1. If |X| ≤ n/4, we require that L = X ∩ P A and |L| ≤ pA; as pA ≤ |P A|/2, there

are at most 2n−|PA|(|PA|
pA

)
n such pairs (X,L);

2. Otherwise, we require that |L| = pA and that the set X ∩ (P A \ L) is non-
succ-exchangeable with respect to P A \ L; by Lemma 2.6 there are at most
∑

l≤|M|
(|PA\L|

l

) ≤ n
(

n
|M|

)
(since |M| ≤ 2ε1n ≤ n/2) non-succ-exchangeable sets

with respect to P A \ L, thus there are at most 2n−|PA|(|PA|
pA

)(
n

|M|
)
n such pairs

(X,L).

Let us now check the correctness of the above pruning. Let 0 ≤ i ≤ n and let
X = σ−1

opt ({1,2, . . . , i}) and L = σ−1
opt (A) ∩ X ∩ P A. It is easy to see that Lemma 2.5

implies that in case i ≥ n/4 the set X ∩ (P A \ L) is non-succ-exchangeable and the
pair (X,L) is accepted.

Let us now shortly discuss the case Γ = B and Δ = ¬A. Recall that, due to the
precedence constraints between P ¬A and MB , the jobs from P ¬A cannot be sched-
uled in the segment A. Therefore, while computing σ [X] for |X| ≥ n/2, we can
represent X ∩ P ¬A as a disjoint sum of two subsets X¬A

B ,X¬A
CD : the first one, of size

pB , to be placed in B , and the second one to be placed in C ∪ D. Recall that in
Sect. 2.6 we have ensured that for any v ∈ I2, all predecessors of v appear in MAB
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and all successors of v appear in MCD . We infer that all predecessors of jobs in X¬A
CD

appear in segments A and B and, by Lemma 2.5, in the optimal solution the set X¬A
CD

is non-succ-exchangeable with respect to P ¬A \ X¬A
B , Therefore we may proceed as

in the case of (Γ,Δ) = (A,A); in particular, while computing σ [X,L]:
1. If |X| ≤ n/4, we require that L = X ∩ P ¬A = ∅;
2. If n/4 < |X| ≤ n/2, we require that L = X ∩ P ¬A and |L| ≤ pB ;
3. Otherwise, we require that |L| = pB and that the set X ∩ (P ¬A \ L) is non-succ-

exchangeable with respect to P ¬A \ L.

The cases (Γ,Δ) ∈ {C,¬D), (D,D)} are symmetrical: L corresponds to jobs
from P Δ scheduled to be done in segment Γ and we require that X ∩ (P Δ \ L) is
non-pred-exchangeable (instead of non-succ-exchangeable) with respect to P Δ \ L.
The recursive definition of T (σ [X,L]) should be also adjusted. �

Observe that if any of the sets P Δ for Δ ∈ {A,¬A,¬D,D} is significantly larger
than n/2 (i.e., larger than ( 1

2 +δ)n for some δ > 0), one of the situations in Lemma 2.9
indeed occurs, since pΓ ≤ n/4 for Γ ∈ {A,B,C,D} and |M| is small.

Lemma 2.10 If 2ε1 < 1/4 + ε3/2 and at least one of the sets P A, P ¬A, P ¬D and
P D is of size at least (1/2 + ε3)n, then the DP algorithm can be augmented to solve
the remaining instance in time bounded by

T3(n) = 2(1/2−ε3)n

(
(1/2 + ε3)n

n/4

)(
n

2ε1n

)

nO(1).

Proof The claim is straightforward; note only that the term 2n−|PΔ|(|PΔ|
pΓ

)
for pΓ <

|P Δ|/2 is a decreasing function of |P Δ|. �

Note that we have 10ε1n22ε2nnO(1) overhead so far. As
(
(1/2+ε3)n

n/4

) = O((2 −
c(ε3))

(1/2+ε3)n) for some constant c(ε3) > 0, for any small fixed ε3 we can choose
sufficiently small ε2 and ε1 to have 10ε1n22ε2nnO(1)T3(n) = O(cn) for some c < 2.

From this point we assume that |P A|, |P ¬A|, |P ¬D|, |P D| ≤ (1/2 + ε3)n. As
P A ∪ P ¬A = I2 = P ¬D ∪ P D and |I2| ≥ (1 − 2ε1 − 2ε2)n, this implies that these
four sets are of size at least (1/2−2ε1 −2ε2 −ε3)n, i.e., they are of size roughly n/2.
Having bounded the sizes of the sets P Δ from below, we are able to use Lemma 2.9
again: if any of the numbers pA, pB , pC , pD is significantly smaller than n/4 (i.e.,
smaller than ( 1

4 − δ)n for some δ > 0), then it is also significantly smaller than half
of the cardinality of the corresponding set P Δ.

Lemma 2.11 Let ε123 = 2ε1 + 2ε2 + ε3. If at least one of the numbers pA, pB , pC

and pD is smaller than (1/4 − ε4)n and ε4 > ε123/2, then the DP algorithm can be
augmented to solve the remaining instance in time bounded by

T4(n) = 2(1/2+ε123)n

(
(1/2 − ε123)n

(1/4 − ε4)n

)(
n

2ε1n

)

nO(1).
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Proof As, before, the claim is a straightforward application of Lemma 2.9, and the

fact that the term 2n−|PΔ|(|PΔ|
pΓ

)
for pΓ < |P Δ|/2 is a decreasing function of |P Δ|. �

So far we have 10ε1n22ε2nnO(1) overhead. Similarly as before, for any small
fixed ε4 if we choose ε1, ε2, ε3 sufficiently small, we have

(
(1/2−ε123)n
(1/4−ε4)n

) = O((2 −
c(ε4))

(1/2−ε123)n) and 10ε1n22ε2nnO(1)T4(n) = O(cn) for some c < 2.
Thus we are left with the case when pA,pB,pC,pD ≥ (1/4 − ε4)n.

2.8 The Remaining Case

In this subsection we infer that in the remaining case the quarters A, B , C and D

are somewhat independent, which allows us to develop a faster algorithm. More pre-
cisely, note that pΓ ≥ (1/4− ε4)n, Γ ∈ {A,B,C,D}, means that almost all elements
that are placed in A by σopt belong to P A, while almost all elements placed in B be-
long to P ¬A. Similarly, almost all elements placed in D belong to P D and almost all
elements placed in C belong to P ¬D . As P A ∩ P ¬A = ∅ and P ¬D ∩ P D = ∅, this
implies that what happens in the quarters A and B , as well as C and D, is (almost)
independent. This key observation can be used to develop an algorithm that solves
this special case in time roughly O(23n/4).

Let WB
quarter = I2 ∩ (σ−1

opt (B) \ P ¬A) and WC
quarter = I2 ∩ (σ−1

opt (C) \ P ¬D). As

pB,pC ≥ (1/4 − ε4)n we have that |WB
quarter|, |WC

quarter| ≤ ε4n. We branch into

at most n2
(

n
ε4n

)2
subcases, guessing the sets WB

quarter and WC
quarter. Let Wquarter =

WB
quarter ∪ WC

quarter, I3 = I2 \ Wquarter, QΔ = P Δ \ Wquarter for Δ ∈ {A,¬A,¬D,D}.
Moreover, let WΓ = MΓ ∪ WΓ

half ∪ WΓ
quarter for Γ ∈ {A,B,C,D}, using the conven-

tion WA
quarter = WD

quarter = ∅.
Note that in the current branch for any ordering and any Γ ∈ {A,B,C,D}, the

segment Γ gets all the jobs from WΓ and qΓ = n/4 − |WΓ | jobs from appropriate
QΔ (Δ = A,¬A,¬D,D for Γ = A,B,C,D, respectively). Thus, the behavior of
an ordering σ in A influences the behavior of σ in C by the choice of which elements
of QA ∩ Q¬D are placed in A, and which in C. Similar dependencies are between
A and D, B and C, as well as B and D (see Fig. 6). In particular, there are no de-
pendencies between A and B , as well as C and D, and we can compute the optimal
arrangement by keeping track of only three out of four dependencies at once, lead-
ing us to an algorithm running in time roughly O(23n/4). This is formalized in the
following lemma:

Lemma 2.12 If 2ε1 + 2ε2 + ε4 < 1/4 and the assumptions of Lemmata 2.2 and 2.8–
2.11 are not satisfied, the instance can be solved by an algorithm running in time
bounded by

T5(n) =
(

n

ε4n

)2

2(3/4+ε3)nnO(1).

Proof Let (Γ,Δ) ∈ {(A,A), (B,¬A), (C,¬D), (D,D)}. For each set Y ⊆ QΔ of
size qΓ , for each bijection (partial ordering) σΓ (Y ) : Y ∪ WΓ → Γ let us define its
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Fig. 6 Dependencies between quarters and sets QΔ . The left part of the figure illustrates where the jobs
from QΔ1 ∩ QΔ2 may be placed. The right part of the figure illustrates the dependencies between the
quarters

cost as

T (σΓ (Y )) =
∑

v∈Y∪WΓ

T (v,σΓ (Y )(v)).

Let σΓ
opt (Y ) be the partial ordering that minimizes the cost (recall that it is unique

due to the initial steps in Sect. 2.4). Note that if we define YΓ
opt = σ−1

opt (Γ ) ∩ QΔ for
(Γ,Δ) ∈ {(A,A), (B,¬A), (C,¬D), (D,D)}, then the ordering σopt consists of the
partial orderings σΓ

opt (Y
Γ
opt ).

We first compute the values σΓ
opt (Y ) for all (Γ,Δ) ∈ {(A,A), (B,¬A), (C,¬D),

(D,D)} and Y ⊆ QΔ, |Y | = qΓ , by a straightforward modification of the DP algo-
rithm. For fixed pair (Γ,Δ), the DP algorithm computes σΓ

opt (Y ) for all Y in time

2|WΓ |+|QΔ|nO(1) ≤ 2(2ε1+2ε2+ε4)n+(1/2+ε3)nnO(1) = O
(
2(3/4+ε3)n

)
.

The last inequality follows from the assumption 2ε1 + 2ε2 + ε4 < 1/4.
Let us focus on the sets QA ∩ Q¬D , QA ∩ QD , Q¬A ∩ Q¬D and Q¬A ∩ QD .

Without loss of generality we assume that QA ∩ Q¬D is the smallest among those.
As they all are pairwise disjoint and sum up to I2, we have |QA ∩ Q¬D| ≤ n/4. We
branch into at most 2|QA∩Q¬D |+|Q¬A∩QD | subcases, guessing the sets

YAC
opt = YA

opt ∩ (
QA ∩ Q¬D

) = (
QA ∩ Q¬D

) \ YC
opt and

YBD
opt = YB

opt ∩ (
Q¬A ∩ QD

) = (
Q¬A ∩ QD

) \ YD
opt .

Then, we choose the set

YAD
opt = YA

opt ∩ (
QA ∩ QD

) = (
QA ∩ QD

) \ YD
opt

that optimizes

T (σA
opt

(
YAC

opt ∪ YAD
opt

)
) + T (σD

opt (Q
D \ (

YAD
opt ∪ YBD

opt

)
).

Independently, we choose the set

YBC
opt = YB

opt ∩ (
Q¬A ∩ Q¬D

) = (
Q¬A ∩ Q¬D

) \ YC
opt
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Table 1 Summary of running times of all cases of the algorithm

Reference Running time

Lemma 2.2 T1(n) = O�((3/4)ε1n2n)

Lemma 2.8 3ε1nT2(n)nO(1) = 3ε1n(2(1−ε2)n + ( n
(1/2−ε2)n

) + 2ε2n
((1−ε2)n

n/2

)
)nO(1)

Lemma 2.10 10ε1n22ε2nT3(n)nO(1) = 10ε1n22ε2n2(1/2−ε3)n
((1/2+ε3)n

n/4

)( n
2ε1n

)
nO(1)

Lemma 2.11 10ε1n22ε2nT4(n)nO(1) = 10ε1n22ε2n2(1/2+2ε1+2ε2+ε3)n
((1/2−2ε1−2ε2−ε3)n

(1/4−ε4)n

)( n
2ε1n

)
nO(1)

Lemma 2.12 10ε1n22ε2nT5(n)nO(1) = 10ε1n22ε2n
( n
ε4n

)22(3/4+ε3)nnO(1)

that optimizes

T (σB
opt

(
YBC

opt ∪ YBD
opt

)
) + T (σC

opt (Q
¬D \ (

YBC
opt ∪ YAC

opt

)
).

To see the correctness of the above step, note that YA
opt = YAC

opt ∪ YAD
opt , and similarly

for other quarters.
The time complexity of the above step is bounded by

2|QA∩Q¬D |+|Q¬A∩QD |(2|QA∩QD | + 2|Q¬A∩Q¬D |)nO(1)

= 2|QA∩Q¬D |(2|QD | + 2|Q¬A|)nO(1)

≤ 2(3/4+ε3)nnO(1)

and the bound T5(n) follows. �

So far we have 10ε1n22ε2nnO(1) overhead. For sufficiently small ε4 we have(
n

ε4n

) = O(2n/16) and then for sufficiently small constants εk , k = 1,2,3 we have

10ε1n22ε2nnO(1)T5(n) = O(cn) for some c < 2.

2.9 Numerical Values of the Constants

Table 1 summarizes the running times of all cases of the algorithm. Using the follow-
ing values of the constants:

ε1 = 2.677001953125 · 10−10,

ε2 = 0.00002724628851234912872314453125,

ε3 = 0.007010121770270753069780766963958740234375,

ε4 = 0.016526753505895047409353537659626454114913940429688

we get that the running time of our algorithm is bounded by:

O
((

2 − 10−10)n)
.
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3 Conclusion

We presented an algorithm that solves SCHED in O((2−ε)n) time for some small ε.
This shows that in some sense SCHED appears to be easier than resolving CNF-SAT
formulae, which is conjectured to need 2n time (the so-called Strong Exponential
Time Hypothesis). Our algorithm is based on an interesting property of the optimal
solution expressed in Lemma 2.6, which can be of independent interest. However,
our best efforts to numerically compute an optimal choice of values of the constants
εk , k = 1,2,3,4 lead us to an ε of the order of 10−10. Although Lemma 2.6 seems
powerful, we lost a lot while applying it. In particular, the worst trade-off seems to
happen in Sect. 2.6, where ε1 needs to be chosen much smaller than ε2. The natural
question is: can the base of the exponent be significantly improved?
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