Abstract
We provide a new theory, alternative to bidimensionality, of sub-exponential parameterized algorithms on planar graphs, which is based on the notion of compactness. Roughly speaking, a parameterized problem is (r,q)-compact when all the faces and vertices of its YES-instances are “r-radially dominated” by some vertex set whose size is at most q times the parameter. We prove that if a parameterized problem can be solved in \(c^{\mbox{\scriptsize branchwidth}(G)}n^{O(1)}\) steps and is (r,q)-compact, then it can be solved by a \(c^{\, r\cdot 2.122\cdot \sqrt{q\cdot k} }n^{O(1)}\) step algorithm (where k is the parameter). Our framework is general enough to unify the analysis of almost all known sub-exponential parameterized algorithms on planar graphs and improves or matches their running times. Our results are based on an improved combinatorial bound on the branchwidth of planar graphs that bypasses the grid-minor exclusion theorem. That way, our approach encompasses new problems where bidimensionality theory do not directly provide sub-exponential parameterized algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)
Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 49–58. Springer, Heidelberg (2009)
Alon, N., Seymour, P., Thomas, R.: Planar separators. SIAM J. Discrete Math. 7, 184–193 (1994)
Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp. 629–638. IEEE, Los Alamitos (2009)
Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of Computer and System Sciences 67, 789–807 (2003)
Chen, J., Kanj, I., Perkovic, L., Sedgwick, E., Xia, G.: Genus characterizes the complexity of graph problems: some tight results. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 845–856. Springer, Heidelberg (2003)
Demaine, E., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. The Computer Journal 51, 292–302 (2007)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Bidimensional parameters and local treewidth. SIAM J. Discrete Math. 18, 501–511 (2005)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for (k,r)-center in planar graphs and map graphs. ACM Trans. Algorithms 1, 33–47 (2005)
Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. Assoc. Comput. Mach. 52, 866–893 (2005)
Demaine, E.D., Hajiaghayi, M.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 590–601. ACM, New York (2005) (electronic)
Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential speedup of fixed-parameter algorithms for classes of graphs excluding single-crossing graphs as minors. Algorithmica 41, 245–267 (2005)
Dorn, F.: Dynamic Programming and Fast Matrix Multiplication. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)
Dorn, F., Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs. In: 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010). LIPIcs, vol. 5, pp. 251–262. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)
Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Computer Science Review 2, 29–39 (2008)
Fernau, H.: Graph Separator Algorithms: A Refined Analysis. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 186–197. Springer, Heidelberg (2002)
Fernau, H., Juedes, D.: A Geometric Approach to Parameterized Algorithms for Domination Problems on Planar Graphs. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 488–499. Springer, Heidelberg (2004)
Fomin, F.V., Golovach, P., Thilikos, D.M.: Contraction bidimensionality: The accurate picture. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 706–717. Springer, Heidelberg (2009)
Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and EPTAS. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 748–759. ACM-SIAM, San Francisco (2011)
Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), Austin, Texas, pp. 503–510. ACM-SIAM (2010)
Fomin, F.V., Thilikos, D.M.: ominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36, 281–309 (2006) (electronic)
Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. Journal of Graph Theory 51, 53–81 (2006)
Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. CoRR, abs/1104.2230 (2011)
Gu, Q.-P., Tamaki, H.: Optimal branch decomposition of planar graphs in O(n 3) time. ACM Trans. Algorithms 4, 1–13 (2008)
Gu, Q.-P., Tamaki, H.: Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 85–96. Springer, Heidelberg (2010)
Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)
Kanj, I., Perković, L.: Improved Parameterized Algorithms for Planar Dominating Set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410. Springer, Heidelberg (2002)
Kloks, T., Lee, C.M., Liu, J.: New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k-Disjoint Cycles on Plane and Planar Graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)
Koutsonas, A., Thilikos, D.: Planar feedback vertex set and face cover: Combinatorial bounds and subexponential algorithms. Algorithmica, 1–17 (2010)
Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth are probably optimal. In: 22st ACM–SIAM Symposium on Discrete Algorithms (SODA 2011), pp. 777–789. ACM-SIAM, San Francisco, California (2011)
Mazoit, F., Thomassé, S.: Branchwidth of graphic matroids. In: Surveys in combinatorics 2007. London Math. Soc. Lecture Note Ser., vol. 346, pp. 275–286. Cambridge Univ. Press, Cambridge (2007)
Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: a logical approach. Tech. Rep. arXiv:1104.3057, Cornell University (April 2011)
Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62, 323–348 (1994)
Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52, 153–190 (1991)
Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)
Tazari, S.: Faster approximation schemes and parameterized algorithms on H-minor-free and odd-minor-free graphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 641–652. Springer, Heidelberg (2010)
van Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Thilikos, D.M. (2011). Fast Sub-exponential Algorithms and Compactness in Planar Graphs. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)