Abstract
We derandomize a recent algorithmic approach due to Bansal [2] to efficiently compute low discrepancy colorings for several problems. In particular, we give an efficient deterministic algorithm for Spencer’s six standard deviations result [13], and to a find low discrepancy coloring for a set system with low hereditary discrepancy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, Chichester (2000)
Bansal, N.: Constructive algorithm for discrepancy minimization. In: FOCS 2010 (2010)
Beck, J.: Roth’s estimate on the discrepancy of integer sequences is nearly sharp. Combinatorica 1, 319–325 (1981)
Beck, J., Sos, V.: Discrepancy theory. In: Graham, R.L., Grotschel, M., Lovasz, L. (eds.) Handbook of Combinatorics, pp. 1405–1446. North-Holland, Amsterdam (1995)
Chazelle, B.: The discrepancy method: randomness and complexity. Cambridge University Press, Cambridge (2000)
Engebretsen, L., Indyk, P., O’Donnell, R.: Derandomized dimensionality reduction with applications. In: SODA 2002, pp. 705–712 (2002)
Kim, J.H., Matousek, J., Vu, V.H.: Discrepancy After Adding A Single Set. Combinatorica 25(4), 499–501 (2005)
Matousek, J.: Geometric Discrepancy: An Illustrated Guide, Algorithms and Combinatorics, vol. 18. Springer, Heidelberg (1999)
Matousek, J.: An Lp version of the Beck-Fiala conjecture. European Journal of Combinatorics 19(2), 175–182 (1998)
Mahajan, S., Ramesh, H.: Derandomizing Approximation Algorithms Based on Semidefinite Programming. SIAM J. Comput. 28(5), 1641–1663 (1999)
Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. of Computer and Systems Sciences 37, 130–143
Spencer, J.: Balancing Games. J. Comb. Theory, Ser. B 23(1), 68–74 (1977)
Spencer, J.: Six standard deviations suffice. Trans. Amer. Math. Soc. 289, 679–706 (1985)
Sivakumar, D.: Algorithmic Derandomization via Complexity Theory. In: IEEE Conference on Computational Complexity (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bansal, N., Spencer, J. (2011). Deterministic Discrepancy Minimization. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)