Abstract
Maximum flow and minimum s-t cut algorithms are used to solve several fundamental problems in computer vision. These problems have special structure, and standard techniques perform worse than the special-purpose Boykov-Kolmogorov (BK) algorithm. We introduce the incremental breadth-first search (IBFS) method, which uses ideas from BK but augments on shortest paths. IBFS is theoretically justified (runs in polynomial time) and usually outperforms BK on vision problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, C., Banerjee, S., Kalra, P., Maheshwari, S.: An Efficient Graph Cut Algorithm for Computer Vision Problems. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 552–565. Springer, Heidelberg (2010)
Boykov, Y., Kolmogorov, V.: An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. IEEE transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)
Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories and Applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 109–131. Springer, Heidelberg (2006)
Chandran, B., Hochbaum, D.: A Computational Study of the Pseudoflow and Push-Relabel Algorithms for the Maximum Flow Problem. Operations Research 57, 358–376 (2009)
Cherkassky, B.V.: A Fast Algorithm for Computing Maximum Flow in a Network. In: Karzanov, A.V. (ed.) Collected Papers. Combinatorial Methods for Flow Problems, vol. 3, pp. 90–96. The Institute for Systems Studies, Moscow (1979) (in Russian); English translation appears in AMS Trans. 158, 23–30 (1994)
Cherkassky, B.V., Goldberg, A.V.: On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica 19, 390–410 (1997)
Dantzig, G.B.: Application of the Simplex Method to a Transportation Problem. In: Koopmans, T.C. (ed.) Activity Analysis and Production and Allocation, pp. 359–373. Wiley, New York (1951)
Dinic, E.A.: Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)
Ford Jr., L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Math. 8, 399–404 (1956)
Goldberg, A.V.: Two-Level Push-Relabel Algorithm for the Maximum Flow Problem. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 212–225. Springer, Heidelberg (2009)
Goldberg, A.V., Rao, S.: Beyond the Flow Decomposition Barrier. J. Assoc. Comput. Mach. 45, 753–782 (1998)
Goldberg, A.V., Tarjan, R.E.: A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)
Goldfarb, D., Grigoriadis, M.D.: A Computational Comparison of the Dinic and Network Simplex Methods for Maximum Flow. Annals of Oper. Res. 13, 83–123 (1988)
Johnson, D.S., McGeoch, C.C.: Network Flows and Matching: First DIMACS Implementation Challenge. AMS, Providence (1993)
Karzanov, A.V.: Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok. 15, 434–437 (1974)
King, V., Rao, S., Tarjan, R.: A Faster Deterministic Maximum Flow Algorithm. J. Algorithms 17, 447–474 (1994)
Sleator, D.D., Tarjan, R.E.: A Data Structure for Dynamic Trees. J. Comput. System Sci. 26, 362–391 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goldberg, A.V., Hed, S., Kaplan, H., Tarjan, R.E., Werneck, R.F. (2011). Maximum Flows by Incremental Breadth-First Search. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)