Skip to main content

Improved Algorithms for Partial Curve Matching

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

Abstract

Back in 1995, Alt and Godau gave an efficient algorithm for deciding whether a given curve resembles some part of a larger curve under a fixed Fréchet distance, achieving a running time of O(nm log(nm)), for n and m being the number of segments in the two curves, respectively. We improve this long-standing result by presenting an algorithm that solves this decision problem in O(nm) time. Our solution is based on constructing a simple data structure which we call free-space map. Using this data structure, we obtain improved algorithms for several variants of the Fréchet distance problem, including the Fréchet distance between two closed curves, and the so-called minimum/maximum walk problems. We also improve the map matching algorithm of Alt et al. for the case when the map is a directed acyclic graph.

Research supported by NSERC, HPCVL, and SUN Microsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H.: The computational geometry of comparing shapes. In: Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pp. 235–248. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49(2), 262–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. of Comput. Geom. Appl. 5, 75–91 (1995)

    Article  MATH  Google Scholar 

  4. Buchin, K., Buchin, M., Gudmundsson, J.: Constrained free space diagrams: a tool for trajectory analysis. Int. J. of Geogr. Inform. Sci. 24(7), 1101–1125 (2010)

    Article  Google Scholar 

  5. Buchin, K., Buchin, M., Knauer, C., Rote, G., Wenk, C.: How difficult is it to walk the dog? In: Proc. 23rd EWCG, pp. 170–173 (2007)

    Google Scholar 

  6. Buchin, K., Buchin, M., Wang, Y.: Exact algorithms for partial curve matching via the Fréchet distance. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms, pp. 645–654 (2009)

    Google Scholar 

  7. Cook, A.F., Wenk, C.: Geodesic Fréchet distance inside a simple polygon. In: Proc. 25th Sympos. Theoret. Aspects Comput. Sci. LNCS, vol. 5664, pp. 193–204 (2008)

    Google Scholar 

  8. Efrat, A., Guibas, L.J., Har-Peled, S., Mitchell, J.S.B., Murali, T.M.: New similarity measures between polylines with applications to morphing and polygon sweeping. Discrete Comput. Geom. 28(4), 535–569 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, M., Xu, Y., Zhu, B.: Protein structure-structure alignment with discrete Fréchet distance. J. Bioinform. Comput. Biol. 6(1), 51–64 (2008)

    Article  Google Scholar 

  10. Maheshwari, A., Sack, J.-R., Shahbaz, K., Zarrabi-Zadeh, H.: Fréchet distance with speed limits. Comput. Geom. Theory Appl. 44(2), 110–120 (2011)

    Article  MATH  Google Scholar 

  11. Maheshwari, A., Sack, J.-R., Shahbaz, K., Zarrabi-Zadeh, H.: Staying close to a curve. In: Proc. 23rd Canad. Conf. Computat. Geom. (to appear, 2011)

    Google Scholar 

  12. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based approach for searching online handwritten documents. In: Proc. 9th Internat. Conf. Document Anal. Recognition, pp. 461–465 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maheshwari, A., Sack, JR., Shahbaz, K., Zarrabi-Zadeh, H. (2011). Improved Algorithms for Partial Curve Matching. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics