Abstract
We consider the minimum Manhattan network problem, which is defined as follows. Given a set of points called terminals in ℝd, find a minimum-length network such that each pair of terminals is connected by a set of axis-parallel line segments whose total length is equal to the pair’s Manhattan (that is, L 1-) distance. The problem is NP-hard in 2D and there is no PTAS for 3D (unless \({\cal P}\!=\!{\cal NP}\)). Approximation algorithms are known for 2D, but not for 3D.
We present, for any fixed dimension d and any \(\ensuremath{\varepsilon} >0\), an \(O(n^\ensuremath{\varepsilon} )\)-approximation. For 3D, we also give a 4(k − 1)-approximation for the case that the terminals are contained in the union of k ≥ 2 parallel planes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Program. 97(1–2), 43–69 (2003)
Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: Short, thin, and lanky. In: Proc. 27th Annu. ACM Symp. Theory Comput (STOC), pp. 489–498. ACM Press, New York (1995)
Benkert, M., Wolff, A., Widmann, F., Shirabe, T.: The minimum Manhattan network problem: Approximations and exact solutions. Comput. Geom. Theory Appl. 35(3), 188–208 (2006)
Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. In: Proc. 9th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 192–200 (1998)
Chepoi, V., Nouioua, K., Vaxès, Y.: A rounding algorithm for approximating minimum Manhattan networks. Theor. Comput. Sci. 390(1), 56–69 (2008)
Chin, F., Guo, Z., Sun, H.: Minimum Manhattan network is NP-complete. Discrete Comput. Geom. 45, 701–722 (2011)
Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A.: Approximating minimum Manhattan networks in higher dimensions. ArXiv e-print abs/1107.0901 (2011)
Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximating algorithms for directed Steiner forest. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 922–931 (2009)
Fuchs, B., Schulze, A.: A simple 3-approximation of minimum Manhattan networks. Tech. Rep. 570, Zentrum für Angewandte Informatik Köln (2008)
Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum Manhattan network. Nordic J. Comput. 8, 219–232 (2001)
Guo, Z., Sun, H., Zhu, H.: Greedy construction of 2-approximation minimum Manhattan network. In: Hong, S., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 4–15. Springer, Heidelberg (2008)
Kato, R., Imai, K., Asano, T.: An improved algorithm for the minimum Manhattan network problem. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 344–356. Springer, Heidelberg (2002)
Lam, F., Alexandersson, M., Pachter, L.: Picking alignments from (Steiner) trees. J. Comput. Biol. 10, 509–520 (2003)
Lu, B., Ruan, L.: Polynomial time approximation scheme for the rectilinear Steiner arborescence problem. J. Comb. Optim. 4(3), 357–363 (2000)
Muñoz, X., Seibert, S., Unger, W.: The minimal Manhattan network problem in three dimensions. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 369–380. Springer, Heidelberg (2009)
Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et Algorithmes. Ph.D. thesis, Université de la Méditerranée (2005)
Seibert, S., Unger, W.: A 1.5-approximation of the minimal Manhattan network problem. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 246–255. Springer, Heidelberg (2005)
Soto, J.A., Telha, C.: Jump number of two-directional orthogonal ray graphs. In: Gülük, O., Woeginger, G. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 389–403. Springer, Heidelberg (2011)
Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner tree problem. Algorithmica 18(1), 99–110 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Das, A., Gansner, E.R., Kaufmann, M., Kobourov, S., Spoerhase, J., Wolff, A. (2011). Approximating Minimum Manhattan Networks in Higher Dimensions. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)