Abstract
We consider the subgraph counting problem in data streams and develop the first non-trivial algorithm for approximately counting cycles of an arbitrary but fixed size. Previous non-trivial algorithms could only approximate the number of occurrences of subgraphs of size up to six. Our algorithm is based on the idea of computing instances of complex-valued random variables over the given stream and improves drastically upon the naïve sampling algorithm. In contrast to most existing approaches, our algorithm works in a distributed setting and for the turnstile model, i. e., the input stream is a sequence of edge insertions and deletions.
The third author was supported by the Alexander von Humboldt-Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 623–632 (2002)
Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 16–24 (2008)
Bordino, I., Donato, D., Gionis, A., Leonardi, S.: Mining large networks with subgraph counting. In: Proceedings of the 8th IEEE International Conference on Data Mining, pp. 737–742 (2008)
Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in data streams. In: Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 253–262 (2006)
Buriol, L.S., Frahling, G., Leonardi, S., Sohler, C.: Estimating clustering indexes in data streams. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 618–632. Springer, Heidelberg (2007)
Chien, S., Rasmussen, L.E., Sinclair, A.: Clifford algebras and approximating the permanent. Journal of Computer and System Sciences 67(2), 263–290 (2003)
Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing 33(4), 892–922 (2004)
Ganguly, S.: Estimating frequency moments of data streams using random linear combinations. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 369–380. Springer, Heidelberg (2004)
Jowhari, H., Ghodsi, M.: New streaming algorithms for counting triangles in graphs. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 710–716. Springer, Heidelberg (2005)
Karmarkar, N., Karp, R., Lipton, R., Lovasz, L., Luby, M.: A Monte-Carlo algorithm for estimating the permanent. SICOMP: SIAM Journal on Computing 22, 284–293 (1993)
McGregor, A.: Open Problems in Data Streams and Related Topics. In: IITK Workshop on Algoriths For Data Sreams (2006), http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf
Muthukrishnan, S.: Data Streams: Algorithms and Applications. Foundations and Trends in Theoretical Computer Science 1(2) (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H. (2011). Approximate Counting of Cycles in Streams. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)