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Abstract In this paper, we analyze the performance of two routing protocols
for opportunistic networks, which are representative of social-oblivious and social-
aware forwarding. In particular, we derive bounds on the expected message delivery
time for a recently introduced stateless, social-aware forwarding protocol using in-
terest similarity between individuals, and the well-known BinarySW protocol. We
compare both from the theoretical and experimental point of view the asymptotic
performance of Interest-Based (IB) forwarding and BinarySW under two mobility
scenarios, modeling situations in which pairwise meeting rates between nodes are
either independent of or correlated to the similarity of their interests. We formally
prove that, under the assumption that sender and destination of a message have

A short version of this paper appeared in the Proceedings of the European Symposium on
Algorithms (ESA) 2011.

Josep Dı́az
Universitat Politecnica de Catalunya
Jordi Girona Salgado 1-3, E-08034 Barcelona – SPAIN
E-mail: diaz@lsi.upc.edu

Alberto Marchetti-Spaccamela
Sapienza Universitá di Roma
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orthogonal interests, IB forwarding provides asymptotically better performance
than BinarySW with interest-correlated mobility. In fact, in this situation Bi-
narySW yields unbounded expected delivery time, compared to bounded expected
delivery time yielded by IB forwarding. On the other hand, when mobility of nodes
is independent of their interests, the two forwarding approaches provide the same
asymptotic performance. Our theoretical results are qualitatively confirmed by a
simulation-based evaluation based on both a real-world trace and a synthetic (but
realistic) mobility model. The analysis is then extended to consider less pessimistic
hypothesis on similarity of sender and destination interests, to a model where the
sender knows the ID of the destination but not its interests, and to forwarding
approaches where multiple copies of the messages can travel along hop-bounded
paths to destination.

Keywords opportunistic networks · pocket switched networks · forwarding
strategies · social-aware forwarding · routing · asymptotic performance evaluation

1 Introduction

Opportunistic networks, in which occasional communication opportunities be-
tween pairs or small groups of nodes are exploited to circulate messages, are
expected to play a major role in next generation short range wireless networks
[22,23,24]. In particular, pocket-switched networks (PSNs) [14], in which network
nodes are individuals carrying around smart devices with direct wireless communi-
cation links, are expected to become widespread in a few years. Message exchange
in opportunistic networks is ruled by the store-carry-and-forward mechanism typi-
cal of delay-tolerant networks [9]: a node (either the sender, or a relay node) stores
the message in its buffer and carries it around, until a communication opportunity
with another node arises, upon which the message can be forwarded to another
node (the destination, or another relay node).

Given this basic forwarding mechanism, a great deal of attention has been
devoted in past years to optimize the forwarding policy of routing protocols. Re-
cently, several authors have proposed optimizing forwarding strategies for PSNs
based on the observation that, being these networks composed of individuals char-
acterized by a collection of social relationships, these social relationships can actu-
ally be reflected in the meeting patterns between network nodes. Thus, knowledge
of the social structure underlying the collection of individuals forming a PSN can
be exploited to optimize the routing strategy, e.g., favoring message forwarding
towards “socially well connected” nodes. Significant performance improvement of
social-aware approaches over social-oblivious approaches has been experimentally
demonstrated [6,13,17].

Most existing social-aware forwarding approaches hinge on the ability of storing
information on the state of the network that can be used to attempt to predict fu-
ture meeting opportunities [3,5,6,13,15,17]. Examples of state information stored
at the nodes are history of past encounters, portion of the social network graph,
etc. On the other hand, socially-oblivious routing protocols such as epidemic [25],
two-hops [11] and the class of Spray-and-Wait protocols [23], do not require stor-
ing additional information in the node buffers, which are then exclusively used
to store the messages circulating in the network. Thus, comparing performance
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of social-aware vs. social-oblivious forwarding approaches would require modeling
node buffers, which renders the resulting network model very complex. If storage
capacity on the nodes is not accounted for in the analysis, unfair advantage would
be given to social-aware approaches, which extensively use state information. This
explains why the fundamental question of whether social-aware forwarding is su-
perior to social-oblivious forwarding per se (and not due to storage of extensive
status information) has remained unaddressed so far.

In [20], a stateless, social-aware forwarding approach has been presented; this
approach is motivated by the observation that individuals with similar interests
meet relatively more often than individuals with diverse interests [18]. The defini-
tion of this Interest-Based forwarding approach (IB forwarding in the following)
allows a fair comparison – i.e., under the same conditions for what concerns us-
age of storage resources – between social-aware and social-oblivious forwarding
approaches in PSNs.

Our contributions. The main goal of this paper is to present, for the first time to
our best knowledge, a comparison of asymptotic performance provided by social-
aware and social-oblivious forwarding protocols for PSNs. For the reasons de-
scribed above, we choose IB forwarding as a representative example of social-aware
protocols, and BinarySW as a representative example of social-oblivious protocols.
BinarySW [23] is chosen since in the mentioned work it is shown to be optimal
within the class of Spray-and-Wait forwarding protocols, and given the extensive
simulation-based evidences of its superiority within the class of stateless, social-
oblivious approaches. Our interest in asymptotic investigation is motivated by the
fact that PSN size can easily grow up to several thousands of nodes.

The two protocols are compared under two different scenarios for what concerns
node mobility: one, called interest-based mobility, in which mobility of individuals
is influenced by similarity of their interests; and the second, called social-oblivious
mobility in which mobility of individuals is oblivious to similarity of their interests.

The specific technical contributions of this paper are:

1. An asymptotic analysis of IB and BinarySW forwarding performance – ex-
pressed in terms of expected message delivery time – in case of both interest-
based and social-oblivious mobility. We consider the case when only one relay
node can be used to speed up message delivery and we prove, under reasonable
probabilistic assumptions, that IB forwarding provides asymptotic performance
benefits compared to BinarySW: IB forwarding yields bounded expected mes-
sage delivery time under both mobility models, while BinarySW yields bounded
expected delivery time with social-oblivious node mobility, but unbounded de-
livery time with interest-based mobility. The result that IB forwarding pro-
vides an asymptotic performance gap with respect to BinarySW forwarding
with interest-based mobility might not be surprising. However, ours is the first
formal proof of this asymptotic performance benefit.

2. We quantitatively confirm the analysis of 1) through simulations based both
on a real-world data trace and a synthetic human mobility model recently
introduced in [19].

3. We extend the analysis of 1) in several ways. First, we consider the case when
many relay nodes, more copies of the message, and more hops can be used to
speed up message delivery. We show that the expected delivery time of Bina-
rySW with interest-based mobility is asymptotically the same, thus proving
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that the asymptotic performance benefit of IB vs. BinarySW forwarding is re-
tained also under these more general conditions. We also consider a version of
the forwarding algorithm in which the sender knows the ID of the destination,
but it does not know its interest profile (see next section for a formal defini-
tion of interest profile). We show that the expected message delivery time with
IB forwarding and interest-based mobility remains bounded even in this more
challenging networking scenario if we allow a limited number of relay nodes.

4. The analysis of 1) and 3) is done under the scenario in which source and
destination of a message have orthogonal interests.We also consider an average-
case scenario in which the angle between the vectors representing source and
destination interests is uniformly distributed in [0, π/2], and show that under
these less pessimistic conditions BinarySW yields bounded expected delivery
time – i.e., the same asymptotic performance as IB forwarding – also with
interest-based mobility.

5. A byproduct of the above analysis is the definition of a simple model of pair-
wise contact frequency correlating similarity of individual interests with their
meeting rate. We believe this model might be useful in studying other social-
related properties of PSNs, and we deem such model a contribution in itself.

The rest of this paper is organized as follows. In the next section, we shortly
survey related work. In Section 3, we present the network and mobility models, and
the forwarding approaches considered in this paper. In Section 4, we present the
analysis of forwarding performance with social-oblivious mobility, while Section
5 considers the case of interest-based mobility. We will then present simulation
results supporting the main theoretical findings of sections 4 and 5 in Section 6.
In Section 7 we extend the analysis to the case of multiple copies of the message
circulating in the network, and arbitrary length of the message delivery path. In
Section 8, we consider the case in which source and destination of a message do
not have orthogonal interests. Finally, Section 9 concludes the paper.

2 Related work

Performance analysis of opportunistic networks has been subject of intensive re-
search in recent years. In particular, the analysis of routing performance – ex-
pressed in terms of the expected message delivery time, as done in this paper –
has been considered in [1,4,12,23,24,26]. More recently, also the distribution of
the message delivery time has been studied [22]. These studies assume a mobil-
ity model equivalent to one of the two-mobility models considered in this paper,
namely the social-oblivious mobility model. Furthermore, they all consider social-
oblivious routing protocols such as epidemic [25], two-hops [11], and BinarySW
routing [24].

Recently, several opportunistic networking protocols accounting for social rela-
tionships between network members have been proposed. These protocols encom-
pass different networking primitives such as unicast [6,13,17], multicast [10], and
publish-subscribe services [3,5,15]. While superiority of social-aware approaches
over social-oblivious ones has been established in the literature based on several
simulation-based evaluations, to our best knowledge theoretical analysis of social-
aware networking protocols for opportunistic networks has remained unaddressed
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so far. As commented in the Introduction, this is likely due to the fact that exist-
ing social-aware forwarding protocols heavily build upon a notion of network state
locally stored at the nodes to improve performance, hence a theoretical evaluation
of their performance would require including in the model the evolution of the
network state and/or buffer occupancy at the nodes, which appears to be a very
difficult task.

In a recent paper [20], some of the authors of this paper proposed a social-aware
forwarding approach for opportunistic networks which, for the first time, does not
exploit local storage of network state to speed up the forwarding process. Instead,
the approach is based on a notion of similarity of interests between individuals,
and on the empirical observation that individuals with relatively similar interests
tend to meet more often than individuals with relatively diverse interests. In this
paper, we take advantage of the stateless feature of the recently proposed social-
aware forwarding approach of [20], and present for the first time a theoretical
investigation of social-aware forwarding protocols in opportunistic networks.

A challenging issue when investigating performance of social-aware forwarding
protocols is taking into account the social dimension in the mobility model used
to analyze routing performance. To the best of our knowledge, while different as-
sumptions about pair-wise inter-meeting rates have been made in the literature
(such as exponential [1,12,23,24,26], power law [4], and power law with exponen-
tial tail [16]), all existing analyses share the common feature that the pair-wise
meeting rates between any pair of nodes in the network have the same stochastic
property (e.g., they are all exponential random variables with a fixed rate λ [1,
12,23,24,26]). Clearly, these models cannot be used to express the influence of
social relationships on pairwise meeting rates since, independently of the specific
stochastic assumptions, the stochastic process modeling pair-wise meeting events
between nodes is oblivious to node identities. A major contribution of this paper is
introducing, for the first time in the literature, a simple model of pair-wise meeting
rates which accounts for social relationships between each specific pair of nodes in
the network. In particular, inspired by the notion of interest space introduced in
[20], we use similarity between user interest profiles as a proxy of the intensity of
their social relationships, and define the intensity of the meeting process between
any two specific nodes A and B in the network to be proportional to the similar-
ity of their interest profiles (see the following for details). The pair-wise meeting
process between any two nodes A and B is assumed to have exponential distribu-
tion, which is representative at least of the tail of inter-meeting time distributions
extracted from real-world traces [16]. We stress that ours is the first model of pair-
wise meeting rates explicitly accounting for a form of social relationships between
individuals; in particular, the rate of the exponential random variable modeling
meeting rate between any two nodes A and B is a function of A’s and B’s interest
profiles.

3 The Network and Mobility Models

We consider a network of n+ 2 nodes, which we denote N = {S,D,R1, . . . , Rn}:
a source node S, a destination node D, and n potential relay nodes R1, . . . , Rn.
Following the model presented in [20], we model each of the n+2 nodes as a point
in an m-dimensional interest space [0, 1]m, where m is the total number of interests
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and m ≪ n. We assume m = Θ(1). The m-dimensional vector associated with a
node defines its interest profile, i.e., its degrees of interest in the various dimen-
sions of the interest space. Each node A ∈ N is thus assigned an m-dimensional
vector A[a1, . . . , am] in the interest space. As in [20], we use the well-known cosine
similarity metric [7], which measures similarity between two nodes A and B as
cos(∠(AB)), the cosine of the angle formed by A and B. Since the cosine similar-
ity metric implies that the norm of the vectors is not relevant, we can consider all
vectors to have unit norm.

The previous model is equivalent to assume nodes are represented as points
in the positive orthant of the m-dimensional unit sphere S. Moreover, we assume
all interests to be non-negative. Therefore, 0 ≤ cos(αAB) ≤ 1, with higher values
of cos(∠(AB)) corresponding to a higher similarity in interests between A and B.
Thus, the cosine similarity metric can be used as a measure of the degree of “ho-
mophily” – similarity in interests and habits [18] – between individuals. We assume
S and D to have orthogonal interests, namely S[1, 0, . . . , 0], and D[0, 1, . . . , 0]. We
call this scenario the worst-case delivery scenario since it corresponds to the worst
case situation (i.e., a situation resulting in the largest expected delivery delay)
under the interest-based mobility model – see below for a formal definition of
interest-based mobility. Furthermore, in the analysis below, we assume the fol-
lowing concerning the distribution of interest profiles in the interest space: first,
the angle αi between the i-th interest profile and S’s interest profile is chosen
uniformly at random in [0, π/2]; then, from all unit vectors in the intersection of
the positive orthant of the m-dimensional sphere with that (m − 1)-dimensional
subspace, one vector is chosen uniformly at random – see Figure 1.

It is important to observe that, while nodes are assumed to move around
according to some mobility model M, node coordinates in the interest space do
not change over time. This is coherent with what happens in real world, where
individual interests change at a much larger time scale (months/years) than that
needed to exchange messages within the network. Thus, when focusing on a single
message delivery session, it is reasonable to assume that node interest profiles
correspond to fixed points in the interest space.

Similar to most analytical works on opportunistic networks [22,23,24], we do
not make any assumption about nodes following a specific mobility model. Rather,
we make assumptions about the meeting rates between individuals in the network.
In particular, we assume that the mobility metric relevant to our purposes is the
expected meeting time, which is formally defined as follows:

Definition 1 Let A and B be nodes in the network, moving in a bounded region
R according to a mobility model M. Assume that at time t = 0 both A and B are
independently distributed in R according to the stationary node spatial distribution
of M,1 and that A and B have a fixed transmission range. The first meeting time
T between A and B is the random variable (r.v.) corresponding to the time interval
elapsing between t = 0 and the instant of time where A and B first come into each
other’s transmission range. The expected meeting time is the expected value of the
r.v. T .

Following the literature [22,23,24], we assume the meeting time between any
pair of nodes A and B is described by a Poisson point process of intensity λAB ,

1 It is well-known that some mobility models, such as RWP, give rise to a non-uniform node
spatial distribution in stationary conditions.
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i.e., TAB follows an exponential distribution with parameter (λAB) and thus
E[TAB] = 1

λAB
. As mentioned in the previous section, we are aware that recent find-

ings indicate that pair-wise meeting patterns obey a power law+exponential tail
dichotomy [16]. However, the simplifying assumption of exponentially distributed
pair-wise meeting process is made in the following to reduce the complexities
brought in the analysis by the assumption of social-aware meeting rates.

In the analysis, we use the following well-known properties of exponentially
distributed random variables:

Fact 1 Given a set of n independent exponentially distributed random variables
X1, . . . , Xn with parameters λ1, . . . , λn, let Xm = min{X1, . . . , Xn} denote the
first order statistic of the n variables. Then, Xm is an exponentially distributed
random variable with rate parameter λm =

∑n
i=1 λi.

Fact 2 Given X1, . . . , Xn and Xm as above, for each j = 1, . . . , n,

Prob(Xm = Xj) =
λj

∑n
i=1 λi

.

In the sequel we consider two mobility models and two forwarding algorithms.
The social-oblivious and interest-based mobility models are defined as follows:

– social oblivious mobility: for any A,B ∈ N , the meeting rate is λAB = λ for
some λ > 0, independent of A and B. This corresponds to the situation in
which node mobility is not influenced by the social relationships between A
and B, and it is the standard model used in opportunistic network analysis
[22,23,24].

– interest-based mobility: the meeting rate λAB between A and B is defined as
λAB = k ·cos(αAB)+δ(n). The first term in the definition of λAB accounts for
the “homophily degree” between individuals A and B, introducing a positive
correlation between “homophily degree” and frequency of meetings. The second
term instead accounts for the fact that occasional meetings can occur also
between perfect strangers; we are interested in the case δ(n) → 0 as n → ∞,
which corresponds to the fact that as n grows, the probability of meeting by
chance a specific individual decreases. Finally, k > 0 is a parameter modeling
the intensity of the interest-based mobility component.

We are interested in characterizing the performance of routing algorithms, i.e., the
dynamics related to delivery of a message M from S to D. With a slight abuse
of notation, we use S, D, or Ri to denote both a node, and its coordinates in the
interest space. The dynamics of message delivery is governed by a routing protocol,
which determines how many copies of M shall circulate in the network, and the
forwarding rules. In our analysis, we consider instances of both, social-aware and
social-oblivious forwarding rules. More specifically, we consider the following two
routing strategies when sending the message M from S to D:

– FirstMeeting (FM): S is allowed to generate two copies of M ; S always keeps
a copy of M for itself. Let Rj be the first node met by S amongst nodes
{R1, . . . , Rn}. If Rj is met before node D, the second copy of M is delivered to
node Rj . From this point on, no new copy of the message can be created nor
transferred to other nodes, and M is delivered to D when the first node among
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S and Rj gets in touch with D. If D is met by S before any of the Ri’s, M is
delivered directly. This protocol is equivalent to BinarySW as defined in [23]
when the number of message copies in BinarySW is fixed to 2. However, for
convenience in the following we retain the name FM to describe this routing
approach.

– InterestBased [20]: IB(γ) routing is similar to FM, the only difference being that
the second copy of M is delivered by S to the first node Rk ∈ {R1, . . . , Rn} met
by S such that cos(Rk, D) ≥ γ, where γ ∈ [0, 1] is a tunable parameter. Note
that IB(0) is equivalent to FM routing. If it happens that after time n still no
node in {R1, . . . , Rn} satisfying the forwarding condition is encountered, then
the first relay node meeting S after time n is given the copy ofM independently
of similarity between interest profiles.

Note that implicit in the IB routing approach is the fact that a node S gen-
erating a message M for a certain destination node D knows D’s interest profile.
Conceptually, this is equivalent to the standard assumption that S knows D’s
address when sending message M . Thus, we can think of D’s interest profile as
her/his address in the network, although technically speaking, a node’s interest
profile cannot be directly used as address since uniqueness of node IDs in principle
cannot be guaranteed. In Section 7, we will extend the analysis to cover the case
in which D’s interest profile is not known to node S.

We remark that IB routing is a stateless approach: interest profiles of encoun-
tered nodes are stored only for the time needed to locally compute the similarity
metrics, and discarded afterwards. Based on this observation, in the following we
will make the standard assumption that node buffers have unlimited capacity [22,
23,24], which contributes to simplifying the analysis.

In the following, we denote by Tµ
X the random variable corresponding to

the time at which M is first delivered to D, assuming a routing protocol X ∈
{FM,IB(γ)} and a mobility model µ ∈ {so, ib}, where so and ib represent social-
oblivious and interest-based mobility, respectively. Our interest in characterizing
delivery delay is due to the fact that, once a notion of TimeToLive is associated
with a message, delivery delay can be used also to estimate the percentage of
messages successfully delivered to destination.

For both algorithms and both mobility models, we consider the following ran-
dom variables: T1 is the r.v. counting the time it takes for S to meet the first node
in the set R = N \ {S}; T2 is 0 if D is the first node in R met by S; otherwise,
if Rj is the first relay node met by S, T2 is the r.v. counting the time, starting at
T1, until the first node amongst S and Rj meets D.

4 Bounds on the expected delivery time: Social Oblivious mobility

In this section, we evaluate FM and IB routing in the social-oblivious mobility
scenario, giving asymptotic expressions for E[T so

FM ] and E[T so
IB(γ)]. Our results

prove that in the social oblivious mobility scenario E[T so
FM ] and E[T so

IB(γ)] are
asymptotically equal to a constant.
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4.1 First-meeting routing

For the sake of completeness, we include the derivation of E[T so
FM ] under social-

oblivious mobility, which can be easily done along the lines in [23]. Since the
meeting processes between S and any other node are independent, and they can
be modeled as exponentially distributed random variables with the same rate
parameter λ, by Fact 1, the time for node S to meet the first node in set R =
{D,R1, . . . , Rn} is itself an exponentially distributed r.v. with rate parameter
(n + 1)λ. Thus, E[T1] =

1
(n+1)λ . With probability 1/(n + 1), the first node met

by S is D, and M is delivered to destination. On the other hand, with probability
n/(n + 1), starting from time T1 we have nodes S and Rj carrying a copy of
message M . Identical argument yields, E[T2] =

1
2λ . Putting everything together,

we can conclude that:

E[T so
FM ] =

1

λ(n+ 1)

1

n+ 1
+

(

1

2λ
+

1

λ(n+ 1)

)

n

n+ 1
,

which converges to 1
2λ , as n → ∞. That is, the expected message delivery time

with FM routing and social-oblivious mobility in very large networks converges to
a positive constant. We summarize this result in the following proposition:

Proposition 1 E[T so
FM ] = 1

2λ(1 + o(1)).

4.2 Interest-based routing

We now consider the case of IB routing. For clarity of the exposition, we set
γ = 0.29

m−1 and prove all results for this value of γ. The extension to other values
of γ ∈ (0, 1) is straightforward.

We start with a technical lemma that will be also used in other parts of the
paper. Denote by Nf the random variable counting the number of nodes Ri sat-
isfying the forwarding condition, i.e., nodes whose interest profile makes an angle
of at most arccosγ with D’s interest profile. Furthermore, we add the condition
that Ri angle with S’s interest profile is at most arccos 3π

8 .

Lemma 1 Denote by Nf the random variable counting the number of nodes Ri

satisfying the following conditions: 1) Ri’s interest profile makes an angle at most
arccosγ with D’s interest profile; and 2) Ri’s interest profile makes an angle of at
most arccos 3π

8 with S’s interest profile. Then, with probability at least 1− e−Θ(n),
for any ν > 0, Nf ≥ (1− ν)n 1

4(m−1) .

Proof Since with probability 1
4 , the angle between S and an arbitrary interme-

diate node Ri is between π
4 and 3π

8 , with that probability cos∠(S,Ri) ≤ 1/
√
2.

Since we assumed S to have coordinates (1, 0, . . . , 0), this means that in that case
∑

j 6=1(Ri)j ≥ ∑

j 6=1((Ri)j)
2 ≥ 1 − 1√

2
≥ 0.29. Since among all positions making

the same angle with S all have the same probability to occur, with probability at
least 1

m−1 , the value at the second coordinate is at least a 0.29
m−1 = γ. Thus, with

probability at least 1
4(m−1) , cos∠(Ri, D) ≥ γ, or equivalently,∠(Ri, D) ≤ arccosγ.

Hence, E[Nf ] ≥ n 1
4(m−1) . Since the positions of all nodes Ri are chosen indepen-

dently, by Chernoff bounds, for any ν > 0, P[Nf ≤ (1 − ν)E[Nf ]] ≤ e−Θ(n), and
the statement follows.
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Proposition 2 E[T so
IB(γ)] =

1
2λ(1 + o(1)), where γ = 0.29

m−1 .

Proof Define Nf as above. By Lemma 1, with probability at least 1− e−Θ(n), for
any ν > 0, Nf ≥ (1− ν)n 1

4(m−1) . Denote by E the event that Nf has at least this

size. Rewrite E[T1] as follows: E[T1] = E[T1|E ]P[E ] + E[T1|Ē]P[Ē], where Ē is the
complementary of event E . Since E[T1] ≤ n(1 + 1

δn ), we have that E[T1|E ] is the
dominating contribution. The fact that E[T1|E ] = O(1/n), combined with the fact
that P[E ] ≥ 1− e−Θ(n) give E[T1] = O(1/n). As in the analysis of the FM routing
algorithm, E[T2] =

1
2λ , and thus E[T so

IB] = 1
2λ(1 + o(1)).

Propositions 1 and 2 imply the announced result E[T so
FM ] = E[T so

IB(γ)](1 +
o(1)) = 2λ(1 + o(1)).

5 Bounds on the expected delivery time: Interest-based mobility

The analysis of FM and IB routing under interest-based mobility is more challeng-
ing than the one for the social-oblivious model, and the results clearly differentiate
the asymptotic behavior of the two routing protocols.

5.1 First-meeting routing

Consider now the case that FM routing is used in presence of interest-based mo-
bility. The difficulty in performing the analysis stems from the fact that, under
interest-based mobility, the rate parameters of the exponential random variables
representing the first meeting time between S and the nodes in the set R are
themselves random variables.

Denote by αi the random variable representing the angle between node S and
Ri in S, and by λi = k cosαi+δ the random variable corresponding to the meeting
rate between S and Ri. Recall that we assume that S and D are orthogonal, and
that the αis are distributed uniformly at random. Hence, the probability density
for any αi to attain any value x ∈ [0, π/2] is 2/π.

In order to make results in case of social oblivious and interest-based mobility
comparable, we first derive the expected value of λi, and set the normalization
constant k in such a way that E[λi] = λ. We have

E[λi] =

∫ π/2

0

2

π
(k cos(α) + δ)dα =

2k

π
+ δ, (1)

and thus k = π
2 (λ− δ).

To compute E[T1] exactly, we have to consider an n-fold integral taking into
account all possible positions of the nodes R1, . . . , Rn in the interest space2. As we
will see shortly, T1 is asymptotically negligible compared with T2, therefore we can
use the trivial lower bound of δ on the rate of the random variables corresponding
to the first meeting time between S and any other node, and thus we get E[T1] ≤

2 Recall that we are considering the fixed, but randomly chosen, position of a node’s interest
profile in the interest space, not its physical position, which depends on the mobility model
M.
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1
nδ . For the same above described reason for the computation of T1, computing
T2 exactly also seems difficult. In the following lemma, we give a lower bound on
E[T2].

Lemma 2 Under the above assumptions, for some constants c, c′ > 0, we have

E[T2] ≥ min{c log(1/δ), c′n

logn
}.

Proof Assume that δ = ω(logn/n). If δ is smaller, we can couple the model with
some other δ̂ = ω(logn/n)) and obtain a new stochastic process whose meeting
time T2 is stochastically bounded from above by the meeting time T2 of the original
model. Let Rf be the first node met by S, and assume Rf 6= D. We analyze the
intensity of the first meeting process between Rf and D. Since this intensity is
always greater than or equal to the intensity of the corresponding process between
S and D, we will have a bound for T2. Recall that S and D are orthogonal in the
interest space, hence they have minimal pairwise meeting rate.

Partition the interval [0, π/2] into subintervals I1, . . . , Iπ/(2δ) of length δ. De-
note by Xi the random variable corresponding to the number of points in the i-th
subinterval. For any fixed i, E[Xi] =

n2δ
π = ω(logn). Using Chernoff’s bounds,

for any ǫ > 0, P[Xi ≤ (1− ǫ)E[Xi]] ≤ n−100, and P[Xi ≥ (1 + ǫ)E[Xi]] ≤ n−100.
Taking a union bound over all Θ(1/δ) ≤ n intervals, we see that with probability
at least 1− n−98, the above property holds in all subintervals.
Consider now the random variable λm =

∑n
i=1 λi, corresponding to the rate

parameter of the r.v. representing the first meeting time between node S and
Rf . From equation (1), together with linearity of expectation we have E[λm] =
n( 2kπ + δ), and by Theorem A.1.15 of [2], P[λm ≥ (1 + ν)n( 2kπ + δ)] = P[λm ≥
(1+ ν)E[λm]] ≤ n−100. Thus, with probability at least 1−n−100, the rate param-
eter λm is at most (1 + ν)n( 2kπ + δ). Hence, with probability at least 1− n−97, in
all subintervals of length δ the number of nodes Xi is within (1± ǫ)E[Xi], and the
rate parameter λm is at most (1 + ν)n( 2kπ + δ). Since in this lemma we are only
interested in a lower bound on E[T2], we condition now under this event, call it
F1. Observe that the rate parameter of the first meeting r.v. between a node in
the i-th subinterval and S is at least k cos(iδ) + δ. Let Ii denote the set of rate
parameters belonging to the i-th sub-interval of [0, π/2], and let λmi =

∑

j∈Ii
λj .

Applying again Theorem A.1.15 of [2], for each subinterval i with probability at
least 1− n−100, we have:

λmi ≥ (1− η)(1− ǫ)
nδ2

π
(k cos(iδ) + δ) ,

where η and ǫ are arbitrarily small positive numbers, and we also condition on
this event, call it F2. Hence, by Fact 2, conditioned on F1 ∧ F2, the probability
that node Rf belongs to the i-th subinterval is at least

2δn(1− η)(1− ǫ)(k cos(iδ) + δ)/π

(1 + ν)n(2k/π+ δ)
.

Observe also that if a node belongs to the ith subinterval, then the rate parameter
of the r.v. corresponding to the first meeting time between such a node and D is
at most k cos(π/2− iδ) + δ ≤ (ki + 1)δ. Denote by Xi denote the event that the
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node Rf belongs to interval i. Take now a time interval of length 1
(ki+1)δ . Denote

by Ei the event that the first meeting time between node Rf and D is larger than
1

(ki+1)δ . Since the rate parameter of any node belonging to the i-th interval and

D is at most 1, we have P[Ei|Xi] ≥ e−1. Conditioning on Ei|Xi, the meeting time
is at least 1

(ki+1)δ . Hence we obtain for the total meeting time

E[T2] ≥
2/(πδ)
∑

i=1

E[T2|Xi]P[Xi] ≥

≥
2/(πδ)
∑

i=1

E[T2|Xi ∧ Ei]P[Xi]P[Ei|Xi] ≥

≥
2/(πδ)
∑

i=1

(

2δn(1− ǫ)(1− η)(k cos(iδ) + δ)/π

(1 + ν)n(2k/π + δ)

1

(ki+ 1)δ
e−1

)

.

For i ≤ 2/(100δ), we have cos(iδ) ≥ 1/2, and the previous sum gives at least

c0
∑2/(100δ)

i=1
1
i for some c0 > 0. Thus, E[T2] = Ω(log(c/δ)), for some c > 0.

Theorem 1 E[T ib
FM ] ≥ min{Ω(log(1/δ)),Ω(n/ logn)}.

Proof As the angle between S and D is at least as large as the angle between S
and any node Ri, we have that the probability that the first node met by S is
different from D is at least n

n+1 ; and that with probability at least 1
2 , Ri will meet

D before S meets D. Thus,

E[T ib
FM ] ≥ (1− 1

n+ 1
)
1

2
min{c log(1/δ), c′n

logn
},

which is min{Ω(log(1/δ)),Ω(n/ logn)}.

Notice the previous theorem implies that if δ = δ(n) = o(1) then E[T ib
FM ] → ∞.

5.2 Interest-based routing

We now consider the case of IB(γ) routing with interest-based mobility. As before,
we set γ = 0.29

m−1 and prove all results for this value of γ. Recall that Nf is the
random variable counting the number of nodes Ri satisfying the conditions of
making an angle at most arccos γ with D, and at the same time making an angle
at most arccos 3π

8 with S. Define as E the event that Nf ≥ 0.99n 1
4(m−1) ; by

Lemma 1, this event holds with probability at least 1− e−Θ(n).

Lemma 3 Under the conditions stated above, we have E[T1] = O(1/n).

Proof With event E as defined above, we can write

E[T1] = E[T1|E ]P[E ] + E[T1|Ē ]P[Ē].
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If E holds, by Fact 1 the rate parameter of the exponential random variable cor-
responding to the first meeting time between S and the Nf nodes satisfying the
forwarding condition is at least cn(k arccos( 3π8 ) + δ), for a constant c > 0. Thus,
E[T1|E ] = O(1/n), and E[T1|E ]P[E ] = O(1/n). On the other hand, if E does not
hold, then E[T1|Ē] ≤

(

n+ 1
δn

)

, since after time n the first node meeting S is cho-

sen. As P[Ē] ≤ e−Θ(n), the contribution of E[T1|E ] is the dominating one and the
statement of the lemma follows.

Lemma 4 Under the conditions above, we have E[T2] ≤ cγ/m for some constant
c > 0.

Proof If E holds, denote by F the event that in a time interval of length n at least
one of the Nf nodes satisfying the forwarding condition meets S. Hence

E[T2] = E[T2|E ∧ F ]P[E ∧ F ] +

+ E[T2|E ∧ F̄ ]P[E ∧ F̄ ] + E[T2|Ē]P[Ē]

Observe that P[F̄ ] ≤ e−n2

. As shown before, P[Ē] ≤ e−n. If both E and F hold,
then by construction the angle between the node Ri chosen in the first step and
D is at most arccos γ

m−1 , and thus the rate parameter of the first meeting time

between Ri and D is at least k γ
m−1 . Therefore, E[T2|E ∧F ] ≤ m−1

γk = Θ(1). Since

in all cases E[T2] can be bounded from above by 1
2δ , the case where both E and F

hold is the dominating contribution and the statement follows.

Lemma 3 and 4 imply the following theorem:

Theorem 2 For some constant c > 0 and any 0 < γ < 1, we have E[T ib
IB(γ)] ≤

mγ/c.

Theorems 1 and 2 formally establish the asymptotic superiority of IB(γ) over
FM routing in case of interest-based mobility, which is in accordance with intuition.

6 Simulations

We have qualitatively verified our asymptotic analysis through simulations, based
on both a real world trace collected at the Infocom 2006 conference – the trace
used in [20,21] –, and the SWIM mobility model of [19], which is shown to closely
resemble fundamental features of human mobility.

6.1 Real-world trace based evaluation

A major difficulty in using real-world traces to validate our theoretical results
is that no information about user interests is available, for the vast majority of
available traces, making it impossible to realize IB routing. One exception is the
Infocom 06 trace [13], which has been collected during the Infocom 2006 confer-
ence. This data trace contains, together with contact logs, a set of user profiles
containing information such as nationality, residence, affiliation, spoken languages
etc. Details on the data trace are summarized in Table 1.
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Similarly to [20], we have generated 0/1 interest profiles for each user based
on the corresponding user profile. Considering that data have been collected in a
conference site, we have removed very short contacts (less than 5min) from the
trace, in order to filter out occasional contacts – which are likely to be several
orders of magnitude more frequent than what we can expect in a non-conference
scenario. Note that, according to [20], the correlation between meeting frequency
of a node pair and similarity of the respective interest profiles in the resulting
data trace (containing 53 nodes overall) is 0.57. Thus, the Infocom 06 trace, once
properly filtered, can be considered as an instance of interest-based mobility, where
we expect IB routing to be superior to FM routing.

In order to validate this claim, we have implemented both FM and IB routing.
We recall that in case of FM routing, the source delivers the second copy of its
message to the first encountered node, while with IB routing the second copy of
the message is delivered by the source to the first node whose interest similarity
with respect to the destination node is at least γ. The value of γ has been set to
0.29/(m− 1) as suggested in the analysis, corresponding to 0.0019 in the Infocom
06 trace. Although this value of the forwarding threshold is low, it is nevertheless
sufficient to ensure a better performance of IB vs. FM routing.

The results obtained simulating sending 5000 messages between randomly cho-
sen source/destination pairs are reported in Figure 2. For each pair, the message is
sent with both FM and IB routing, and the corresponding packet delivery times are
recorded. Experiments have been repeated using different TTL (TimeToLive) val-
ues of the generated message. Figure 2 reports the difference between the average
delivery time with FM and IB routing, and shows that a lower average delivery
time is consistently observed with IB routing, thus qualitatively confirming the
theoretical results derived in the previous section.

6.2 Synthetic data simulation

The real-world trace based evaluation presented in the previous section is based
on a limited number of nodes (53), and thus it cannot be used to validate FM and
IB scaling behavior. For this purpose, we have performed simulations using the
SWIM mobility model [19], which has been shown to be able to generate synthetic
contact traces whose features very well match those observed in real-world traces.
Similarly to [20], the mobility model has been modified to account for different
degrees of correlation between meeting rates and interest-similarity.We recall that
the SWIM model is based on a notion of “home location” assigned to each node,
where node movements are designed so as to resemble a “distance from home” vs.
“location popularity” tradeoff. Basically, the idea is that nodes tend to move more
often towards nearby locations, unless a far off location is very popular. The “dis-
tance from home” vs. “location popularity” tradeoff is tuned in SWIM through a
parameter, called α, which essentially gives different weights to the distance and
popularity metric when computing the probability distribution used to choose the
next destination of a movement. It has been observed in [19] that giving preference
to the “distance from home” component of the movement results in highly realistic
traces, indicating that users in reality tend to move close to their “home location”.
This observation can be used to extend SWIM in such a way that different degrees
of interest-based mobility can be simulated. In particular, if the mapping between
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nodes and their home location is random (as in the standard SWIM model), we
expect to observe a low correlation between similarity of user interests and their
meeting rates, corresponding to a social-oblivious mobility model. On the other
hand, if the mapping between nodes and home location is done based on their in-
terests, we expect to observe a high correlation between similarity of user interests
and their meeting rates, corresponding to an interest-based mobility model.

Interest profiles have been generated considering four possible interests (m =
4), with values chosen uniformly at random in [0, 1]. In case of interest-based
mobility, the mapping between a node interest profile and its “home location”
has been realized by taking as coordinates of the “home location” the first two
coordinates of the interest profile. In the following we present simulation results
referring to scenarios where correlation between meeting rate and similarity of
interest profiles is -0.009 (denoted Non-Interest based Mobility – NIM – in the
following), and 0.61 (denoted Interest-based Mobility – IM – in the following),
respectively. We have considered networks of size 1000 and 2000 nodes in both
scenarios, and sent 105 messages between random source/destination pairs. The
results are averaged over the successfully delivered messages. In the discussion
below we focus only on average delay. However, we want to stress that in both IM
and NIM scenarios, the IB routing slightly outperforms FM in terms of delivery
rate (number of messages delivered to destination within TTL): The difference of
delivery rates is about 0.015% in favor of IB.

Figure 3 depicts the performance of the protocols for various values of γ on
IM mobility. As can be noticed by the figure, the larger the relay threshold γ, the
more IB outperforms FM. Moreover, as predicted by the analysis, the performance
improvement of IB over FM routing becomes larger for larger networks. Indeed,
for γ = .9 and TTL = 24h, message delivery with IB is respectively 80min and
90min faster on the network of respectively 1000 nodes (see Figure 3(a)) and 2000
nodes (see Figure 3(a)). This means that, with IM mobility, IB routing delivers
more messages with respect to FM, and more quickly.

Notice that the results reported in Figure 3 apparently are in contradiction with
Theorem 2, which states an upper bound on the expected delivery time which is
directly proportional to γ – i.e., higher values of γ implies a looser upper bound.
Instead, results reported in Figure 3 show an increasingly better performance of
IB vs. FM routing as γ increases. However, we notice that the bound reported
in Theorem 2 is a bound on the absolute performance of IB routing, while those
reported in Figure 3 are results referring to the relative performance of IB vs. FM
routing.

The performance of the protocols with NIM mobility is depicted in Figure 4.
In this case, the performances of the two protocols are very close to each other
– independently of γ –, and they become virtually indistinguishable for larger
networks. The negative values in the figure are due to the few more messages that
IB delivers to destination whereas FM does not. Some of these messages reach the
destination slightly before the TTL, thus increasing the average delay. However,
independently of γ, the values are close to zero. This indicates that, if mobility
is not correlated to interest similarity, as far as the average delay is concerned
the selection of the relay node is not important: A node meeting the forwarding
criteria in IB routing is encountered on average soon after the first node met by
the source.
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6.3 Discussion

The Infocom 06 trace is characterized by a moderate correlation between meeting
frequency and similarity of interest profiles – the Pearson correlation index is 0.57.
However, it is composed of only 53 nodes. Despite the small network size, our
simulations have shown that IB routing indeed provides a shorter average message
delivery time with respect to FM routing, although the relative improvement is
almost negligible (of the order of 0.06%).

To investigate relative FM and IB performance for larger networks, we used
SWIM, and simulated both social-oblivious and interest-based mobility scenar-
ios. Once again, the trend of the results qualitatively confirmed the asymptotic
analysis: in case of social-oblivious mobility (correlation index is -0.009), the per-
formance of FM and IB routing is virtually indistinguishable for all network sizes;
on the other hand, with interest-based mobility (correlation index is 0.61), IB rout-
ing provides better performance than FM. It is interesting to observe the trend of
performance improvement with increasing network size: performance is improved
by about 5.5% for 1000 nodes, and by about 6.25% for 2000 nodes. Although
percentage improvements over FM routing are modest, the trend of improvement
is clearly increasing with network size, thus confirming the asymptotic analysis.
Also, IB forwarding performance improvement over FM forwarding becomes more
and more noticeable as the value of γ, which determines selectivity in forwarding
the message, becomes higher: with γ = 0.2 and 2000 nodes, IB improves delivery
delay w.r.t. FM forwarding of about 0.1%; with γ = 0.6 improvement becomes
1.7%, and it raises up to 6.25% when γ = 0.9.

7 More copies and more hops

In this section, we extend the analysis of sections 4 and 5 under several respects.
To start with, we consider a variation of the FM routing protocol for the case
of interest-based mobility, which we call FM*. In this variation, we assume that
the message is forwarded between two nodes only if the new node (its interest
profile) is closer (i.e., more similar) to the destination than the node currently
carrying the message. Also, we assume that if a node has already forwarded the
message to a set of nodes, then it will forward the message only to nodes which are
closer to the destination than all the previous ones. Clearly, FM* performs better
than FM routing in presence of interest-based mobility, since it at least partially
accounts for similarity of interest profiles when forwarding messages. Note that
the difference between FM* and IB routing is that, while in the latter a minimum
similarity threshold between potential forwarders and destination must be met, in
the former even a tiny improvement of similarity w.r.t. destination of the potential
forwarder with respect to current forwarders is enough to forward the message. In
this respect, FM* somewhat resembles delegation forwarding [8].

The routing protocols considered in this section are extensions of FM and
IB under the following respect. The source node S initially carries an arbitrary
number q ≥ 2 of message copies (and not just 2 copies as in the original protocols).
Furthermore, if a node A currently carrying k copies of the message meets a new
forwarding node B, it will deliver to B exactly ⌊k/2⌋ copies of the message, keeping
the remaining ⌈k/2⌉ for itself. When a node is left with a single copy of the message,
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it can deliver this copy only to the destination. Notice that, by setting q to an
arbitrary power of 2, the extended version of FM is equivalent to BinarySW [23].
Notice also that, if q > 2, the extended versions of the routing protocols allow
delivery of messages from S to D along paths of hop-count larger than 2.

In the next subsection, we consider a version of FM* where multi-hop propa-
gation of a message from S to D is allowed. In other words, if A and B are the two
nodes currently carrying a copy of M – we retain the assumption of at most two
message copies circulating in the network –, either of them – say, A –, can deliver
its copy to another node C if C’s interests are more similar to D’s than those of
node A. This process is repeatable, up to a maximum length of ℓ in the message
propagation path (ℓ = 2 in the original protocols).

First, we observe that, for any mobility model and any routing algorithm, it
is clear that the expected meeting times of ℓ > 2 hops and q > 2 copies are
always at most as large as the expected meeting times of the case of 2 copies
and 2 hops. Thus, upper bounds on the asymptotic performance provided by IB
routing remains valid also for ℓ, k > 2. We now show that, even by allowing more
copies and/or hops and a smarter forwarding strategy (the FM* approach), the
expected meeting time of FM routing in both mobility models does not improve
asymptotically.

For presentation purposes, in the following we will exploit the well-known rela-
tion between Poisson point processes and exponentially distributed r.v.s, namely
the fact that the time for the first hit in a Poisson point process of intensity µ is
an exponentially distributed r.v. of rate parameter µ. Thus, by “intensity of the
Poisson process between A and B” we mean “the rate of the exponentially dis-
tributed r.v. corresponding to the first meeting time between A and B”. In order
to simplify the presentation of the statements, by the observation made in the
beginning of the proof of Lemma 2, we will assume that δ = ω(logn/n).

7.1 ℓ hops

First we consider the case of FM* routing with ℓ ≥ 2 (ℓ constant) hops and 2
copies only. We denote by T1 the random variable counting the time it takes for S
to meet the first node out of {R1, . . . , Rn, D}. Denote by Rr(i) the i-th node met
by S, and, for i = 2, . . . , ℓ− 1, let Ti be the random variable counting the time it
takes for Rr(i−1) to meet Rr(i) (we assume that if D was met already in previous
steps, then Ti = 0). Tℓ finally is the random variable counting the time it takes
for the first out of {S,Rr(ℓ−1)} to meet D (if D was met in previous rounds then
Tℓ = 0).

In the case of social-oblivious mobility, we have E[T1] =
1

λ(n+1) , E[Ti] ≤ 1
λn

for i = 2, . . . , ℓ − 1 and E[Tℓ] ≤ 1
2λ . By a similar discussion as in Section 4,

E[T so
FM∗ ] ≤ 1

2λ(1 + o(1)). However it is possible to show that the probability that
r.v. Ti, i = 1, 2, . . . , ℓ is zero is negligible and, hence, we are able to state that
E[T so

FM∗ ] = 1
2λ(1 + o(1)).

In the case of interest-based mobility, we first need the following lemma:

Lemma 5 There exist constants α > 0 and β > 0 such that, with probability at
least α, the first ℓ− 1 nodes that serve as intermediate hops all make up an angle
of at most ℓ−1

βδ with S.
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Proof See Appendix.

The following is an immediate consequence of the previous lemma.

Corollary 1 With probability at least α > 0, D is not yet found among the ℓ− 1
vertices that serve as intermediate hops.

The following lemma extends Lemma 2 to the case of ℓ hops.

Lemma 6 Under the assumptions above, we have E[Tℓ] ≥ c log(1/δ) for some
positive constant c.

Proof See Appendix.

By combining Corollary 1 and Lemma 6, we have proved the following:

Theorem 3 E[T ib
FM∗ ] = Ω(log(1/δ)).

7.2 Using q copies and ℓ hops

We now discuss how to extend the model of ℓ hops to the model where q ≥ 2
copies of a message are used. We assume without loss of generality that q = 2w

for some natural number w.
We start with the following straightforward observation.

Observation 1 The number of relay nodes (excluding S) is at most ℓ − 1, and
exactly ℓ− 1 if D is not among them.

We define the Poisson point process between two vertices U and V , U, V ∈
{S,R1, . . . , Rn, D} as active at time t if at time t node U has more than one copy
of the message, V does not yet have a copy, and V is closer to D than all vertices
containing already copies of messages. Define by T1 the random variable counting
the time it takes for S to meet the first out of {R1, . . . , Rn, D}. Ti, i = 2, . . . , q−1
is the random variable counting the time of the first meeting of all active Poisson
point processes at time T1 + . . .+Ti−1 from time T1 + . . .+Ti−1 onwards (Ti = 0
if D has been met before). Tq is the random variable counting the time of the
first meeting of all Poisson processes between vertices that have one copy of the
message at time T1 + . . .+ Tq−1 and D (Tq = 0 if D has been met before).

Observe that for the FM* routing algorithm in the social-oblivious mobility
model, we have E[T1] =

1
λ(n+1) , E[Ti] ≤ 1

λ(n+1) for i = 1, . . . , q−1, and E[Tq] ≤ 1
qλ .

By the same argument as in Subsection 7.1, we can show that E[T so
FM∗ ] = 1

qλ(1 +

o(1)). Thus, in this model the expected message delivery time for q > 2 is a smaller
constant.

Now we consider FM* routing in the interest-basedmobilitymodel. CallRr(1), . . . , Rr(h−1)

the intermediate nodes in order of their appearance, i.e., Rr(i) contains at least
one copy of the message from time T1 + . . .+ Ti on, for any i = 1, . . . , h− 1.

Lemma 7 With probability at least α > 0, D is not among the first h − 1 hops
containing at least one copy of the message.

Proof See Appendix.
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The previous lemma states that, with probability at least α, all of theRr(1), . . . , Rr(q−1)

nodes make an angle of at most q−1
βδ with S.

We are now ready to state the main result of this section.

Theorem 4 Assume S has q copies of M and we can make up to ℓ = log2 q hops,
then

E[T ib
FM∗ ] = Ω(log(1/δ)).

Proof See Appendix.

7.3 Unknown destination

A major limitation of IB routing is that the sender is assumed to know the interest
profile of the destination, i.e., the coordinatesD[a1, a2, . . . , am] of D in the interest
space. We now relax this assumption assuming that S knows the identity of node
D (so delivery of M to D is possible), but not its interest profile, and we show
that a modified version of the IB(γ) routing that uses more than one copy of the
message also provides asymptotically the same upper bound as the original version
of IB routing.

The idea is that the routing protocol choosesm−1 relay nodes (i.e., the number
of message copies equals the number of dimensions in the interest space) with the
characteristic that each one the m− 1 relay nodes will be “almost orthogonal” to
the others and to S, and S will pass a copy to each one of them, and keep one.
Therefore, when S decides whether or not to forward a copy of M to a possible Ri,
S has only information of Ri[a1, a2, . . . , am]. Let R̂j denote the j-th relay chosen
node, j = 1, 2, . . . ,m− 1. We consider the following routing algorithm Mod-IB(γ)
to choose relay nodes: If S meets a node with coordinates Ri[r1, r2, . . . , rm], the
node becomes the j-th relay node R̂j , j = 1, 2, . . . , q−1, if the following conditions
are met:

– 0.05 ≤ Ri[1] ≤ 0.1;
– ∃k, 2 ≤ k ≤ m s. t. 0.8 ≤ Ri[k] ≤ 0.85;
– ∀s, 1,≤ s ≤ j − 1, R̂s[k] < 0.8.

Theorem 5 For a constant c > 0 and γ = 0.29
m−1 we have E[T ib

Mod−IB(γ)] ≤ mγ/c.

Proof See Appendix.

8 Uniform distribution of the destination D

So far, we have considered S and D to have orthogonal coordinates in the interest
space. In this section, we extend the analysis to the case where the source keeps its
coordinates S[1, 0, . . . , 0], but we choose ∠(S,D) uniformly at random in [0, π/2].
We show that under this average-case assumptions, the original FM routing algo-
rithm takes constant time also with interest-based mobility, i.e., it has the same
asymptotical performance as IB routing.

Theorem 6 Assume the angle between S and D is chosen uniformly at random
in [0, π/2]. Then, E[T ib

FM ] = O(1).
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Proof See Appendix.

Note that a routing algorithm without intermediate hops, call it FM0, according
to which S can only directly deliver the message to D, still needs more than
constant time in expectation.

Lemma 8 Under the above assumptions, we have E[TFM0 ] = Ω(log(1/δ)).

Proof See Appendix.

Comparing Theorem 6 with Theorem 2, and observing that average case per-
formance of IB routing can be no worse than its performance in the worst case,
we can conclude that FM and IB routing yield the same asymptotic performance
in the average case.

9 Conclusion

We have formally analyzed and experimentally validated the delivery time un-
der mobility and forwarding scenarios accounting for social relationships between
network nodes. The main contribution of this paper is proving that, under fair
conditions for what concerns storage resources, social-aware forwarding is asymp-
totically superior to social-oblivious forwarding in presence of interest-based mo-
bility: its performance is never below, while it is asymptotically superior under
some circumstances, namely, orthogonal interests between sender and destination.

As a byproduct, our analysis provides interesting insights on the design of
social-aware forwarding strategies; for instance, our results indicate that when
the interest profile of the destination is not known to the source node, a good
strategy is trying to deliver a copy of the message to forwarding nodes with “almost
orthogonal” interests, in order to increase the chances that at least one of them
is near to the destination in the interest space and, hence, likely to meet the
destination soon according to the interest-based mobility model.

We believe several avenues for further research are disclosed by our initial
results, such as considering scenarios in which individual interests evolve in a short
time scale, or scenarios in which forwarding of messages is probabilistic instead of
deterministic.
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11 Appendix

Proof of Lemma 5. As in Section 5, we partition the interval [0, π/2] into subin-
tervals of length δ and we extend Lemma 2 by showing that the probability that
node Rr(1) is chosen from the i-th subinterval is at least

2δn(1− η)(1− ǫ)(k cos(iδ) + δ)/π

(1 + ν)n(2k/π + δ)
.

For i ≤ 1
100δ , this probability is at least

δ
c for some constant c > 0. Choose β = β(ℓ)

to be a sufficiently large constant. Thus, the probability that Rr(1) is in the first
1
βδ subintervals, is at least η1 for some η1 > 0. By conditioning under this event,

by a similar argument as in Lemma 2, we can prove using Theorem A.1.15 of [2],
that, with high probability, the intensity of the Poisson point processes between S
(or the chosen node Rr(1) in the first 1

βδ subintervals) and all nodes whose angle

w.r.t. the destination is to the right of these subintervals is at least Ω(n).

We now recall that all vertices closer to D than Rr(1) are possible next hops.
Using this observation, we now iterate the previous reasoning: with probability
at least η2 the second node Rr(2) is among the first 2

βδ subintervals (and not

among the first 1
βδ subintervals), and in general with probability ηi the node

Rr(i) is among the first i
βδ subintervals, for any i = 1, . . . , ℓ − 1. Therefore, with

probability at least α :=
∏ℓ−1

i=1 ηi, the first ℓ− 1 intermediate nodes form angles of
at most ℓ−1

βδ with S, thus proving the lemma.

Proof of Lemma 6. To prove the lemma, we first use Lemma 5, that implies
that nodes R1, . . . , Rℓ−1 all make an angle of at most ℓ−1

βδ with probability at least
α. Thus, conditioning under this event, we apply a similar argument as in Lemma 2:
denoting by Ej the event that node Rj is in subinterval ij , and denoting by E1(ℓ−1)

the event that E1 ∧ . . . ∧ Eℓ−1, we have that there exist constants c0, c1 > 0 such
that

E[Tℓ] ≥
ℓ−1

βδ
∑

i1=1

. . .

ℓ−1

βδ
∑

iℓ−1=iℓ−2

E[Tℓ|E1(ℓ−1)]P[E1(ℓ−1)]

=

ℓ−1

βδ
∑

i1=1

. . .

ℓ−1

βδ
∑

iℓ−1=iℓ−2

E[Tℓ|E1(ℓ−1)]

P[E1]P[E2|E1] . . .P[Eℓ−1|E1 ∧ . . . ∧ Eℓ−2]

≥
ℓ−1

βδ
∑

i1=1

. . .

ℓ−1

βδ
∑

iℓ−1=iℓ−2

1

(kiℓ−1 + 1)δ
e−1(c0δ)

ℓ−1

≥ c1e
−1

ℓ−1

βδ
∑

iℓ−1=iℓ−2

1

(kiℓ−1 + 1)
,

and therefore E[Tℓ] ≥ c log(1/δ)) for some positive constant c.
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Proof of Lemma 7. We first observe that Lemma 5 also applies in the case
when we consider Poisson point processes between any node out of {S,Rr(1), . . . , Rr(i)}
(chosen from the first i

βδ subintervals) and a node to the right of Rr(i): no matter

which node is chosen out of {S,Rr(1), . . . , Rr(i)}, the probability of choosing one
node from the subinterval following Rr(i) is still Θ(1/δ), since the total inten-
sity of all Poisson point processes between Rr(i) and the vertices to the right of

Rr(i) is still Θ(n). Thus, by considering the 1
βδ subintervals following Rr(i), we

can show that, with constant probability, the next node Rr(i+1) belongs to these
subintervals.

By multiplying all constants of all q−1 steps, we can show that, with probability
at least α, all q − 1 intermediate nodes form an angle of at most q−1

βδ with any

node out of {S,Rr(1), . . . , Rr(i)}, and thus with at least that probability D is not
among these q − 1 nodes.

Proof of Theorem 4. To prove the result, we have to show that E[Tq] =
Ω(1/δ). Observe that if the Poisson point process between Rr(q−1) and D has at

most certain intensity µ, all other Poisson point processes between {Rr(i)}q−2
i=1 ∪

{S} also have intensity at most µ. Moreover, these Poisson point processes are
independent, and their superposition gives rise, by Fact 1, to a new Poisson point
process with intensity at most qµ. Thus, using similar arguments as in the proof
of Lemma 6, we can split the value of E[Tq] according to the subintervals of length
δ to which node Rr(i) belongs (assuming that all of them are among the first q−1

βδ

subintervals), obtaining

E[Tq] ≥ c1e
−1

q−1

βδ
∑

iq−1=iq−2

1

q(kiq−1 + 1)
,

and thus E[Tq] ≥ c2 log(1/δ)
q . Since q is assumed to be constant, E[Tq] = Ω(1/δ).

Proof of Theorem 5. Assume that R̂j is only accepted as j-th relay node if
the value in the j-th coordinate is between 0.8 and 0.85. First we will show that
E[T1] = O(1/n). Observe that for any node R (except for D),

Pr [0.05 ≤ cos∠(S,R) ≤ 0.1] ≥ 0.03.

Conditioned under making such an angle, the sum of the squares of all other
coordinates of R is at least 0.99, and once the angle is chosen, the position on
the sphere is selected uniformly at random from all remaining positions, so the
position of v is chosen from the surface of an (m−1)-dimensional sphere of squared
radius ≥ 0.99. Fix a coordinate j ≥ 2 in which we would like to have 0.8 ≤ R[j] ≤
0.85. The intersection of an m-dimensional sphere of squared radius at least 0.99
centered at the origin, with the region bounded by the two parallel hyperplanes
whose values in dimension j are 0.8 and 0.85, respectively, has a surface area which
is bigger than the one of an (m− 1)-dimensional sphere of squared radius at least
0.51. Intersecting this area with a hyperplane having some fixed value in the first
coordinate between 0.05 and 0.1 yields a surface area of at least the surface area
of an (m−2)-dimensional sphere of squared radius 0.5 times 0.05. Thus, denoting
by Sm(r) the surface area of an m-dimensional sphere of radius r, and denoting
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by Ev
j the event that vertex R satisfies the conditions for being selected as relay

node R̂j , we obtain

Pr
[

Ev
j

]

≥ 0.03
0.05Sm−2(

√
0.5)

Sm−1(1)
,

where c > 0 is obtained from the the fact that Sm(r) = 2πm/2rm−1

Γ (m/2) . Thus, we have
an expected number of potential vertices satisfying the condition to be selected as
R̂j . Since all vertices are independent, we have that with probability ≥ 1−e−Θ(n)

this number is linear. Taking a union bound, we get that this also holds for all
m dimensions with the same probability. Since the intensity between any vertex
eligible as R̂j and S is constant, conditioning under the event E of having a linear
number of possible relay nodes, E[T1|E ] = O(1/n). Since Pr

[

Ē
]

= e−Θ(n), the
dominating contribution comes from E[T1|E ], so E[T1] = O(1/n).
To finish the proof, we show that there exists c > 0 such that E[T2] ≤ mγ/c:
observe that since D is a vector in the positive orthant of the m-dimensional
sphere, in at least one dimension its coordinate has to be at least 1√

m
. As there

exists some R̂j whose value in this coordinate is ≥ 0.8, cos∠(R̂j , D) ≥ 0.8√
m
. For

any m ≥ 2, 0.8√
m

> γ
m−1 , and thus, the same analysis as above gives the upper

bound of mγ/c.

Proof of Theorem 6. We restrict ourselves to the 2-dimensional case. Denote
by R the relay node chosen. Since the first node met by S is selected as relay node,
E[T1] = O(1/n). We will give an upper bound on E[T2] following the same ideas
as before: we split the angles between S and D as well as the positions of R, into
intervals of length δ. Denote by Xi the event that R is in the i-th interval, and
denote by Yj the event that D is in the j-th interval, for 1 ≤ i, j ≤ π

2δ . Then,

E[T2] =
∑

i

∑

j

E[T2|Xi ∧ Yj ]Pr [Xi]Pr [Yj ] .

By definition, Pr [Yj ] = 2δ/π, and by Chernoff bounds, Pr [Xi] ≤ cδ for small
c > 0.
Observe that for j ≤ 3π

8δ , cos∠(S,D) ≥ 0.38, and therefore E[T2|Yj ] = O(1).
Moreover, if i ≥ π

8δ , cos∠(Ri, D) ≥ 0.38, and thus E[T2|Xi] = O(1). Assume
i < π

8δ and j > 3π
8δ . Given events Xi and Yj , ∠(R,D) ≤ jδ − (i − 1)δ, and hence

cos∠(R,D) ≥ cos(j − (i− 1))δ.
Therefore, given Xi and Yj , the expected time is at most 1

k cos((j−i+1)δ) . Thus,

E[T2] ≤ O(1) + cδ2
∑

1≤i< π
8δ

∑

j> 3π
8δ

1

k cos ((j − i+ 1)δ)
.

Writing j = π
2 − t, we get

E[T2] ≤ cδ2
∑

1≤i< π
8δ

∑

0≤t< π
8δ

1

k sin ((t+ i− 1)δ)
.

Using the bound

sin((t+ i− 1)δ) ≥ (t+ i− 1)δ − ((t+ i− 1)δ)3/6 ≥ 5

6
(t+ i− 1)δ ,
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we obtain

E[T2] ≤ cδ
6

5k

∑

i

∑

t

1

t+ i− 1
.

Setting u = i− 1, we have E[T2] ≤ c′δ
∑

π
8δ
u=0

∑

π
8δ
t=0

1
t+u for some c′ > 0.

The cases where i = 1 or t = 0 or t = 1 all happen with probability at most cδ,
and since the intensity between any pair of points is at least δ, the contribution
of these cases to E[T2] is at most O(1). Hence, we exclude these cases to get

E[T2] ≤ O(1) + c′δ

π
8δ
∑

u=2

π
8δ
∑

t=2

1

t+ u

≤ O(1) + c′δ

∫ π
8δ

u=1

∫ π
8δ

t=1

1

t+ u
dt du . (2)

Since,
∫

π
8δ
t=1

1
t+udt = log( π

8δ + u)− log(1 + u), we have

∫

π
8δ
u=1

(

log( π
8δ + u)− log(1 + u)

)

du

=
(

( π
8δ + u) log( π

8δ + u)− (1 + u) log(1 + u)
)

|
π
8δ
u=1

= π
4δ log π

4δ − 2( π
8δ + 1) log( π

8δ + 1) + 2 log 2
≤ π

4δ (log
π
4δ − log( π

8δ + 1)) + 2 log 2
≤ π

4δ log 2 + 2 log 2.

Thus, E[T2] = O(1) + c′δ( π
4δ log 2 + 2 log 2) = O(1), and the statement of the

theorem follows.

Proof of Lemma 8. Denoting by α = ∠(S,D), we have

E[TFM0 ] =

∫ π/2

0

2

π

1

k cosα+ δ
dα.

For α > (π/2 − δ), the intensity of the Poisson process is ≥ δ, and since such
value of α is chosen with probability ≤ 2δ

π , the total contribution of this case to
E[TFM0 ] is O(1). Hence, consider only α < (π/2− δ). In this case, for a suitably
chosen constant c > 0, the intensity of the Poisson process between S and D is at
most ck cosα. Thus,

E[TFM0 ] ≥
∫ (π/2−δ)

0

2

π

1

ck cosα
dα

=
2

cπk
(log(sin(α/2) + cos(α/2))− log(cos(α/2)

− sin(α/2))) |(π/2−δ)
α=0 .

Evaluating the integral, we obtain that this term is at least

−c′ log (cos((π/2− δ)/2)− sin((π/2− δ)/2))

for some c′ > 0. Making a Taylor series expansion for the expression inside the
logarithm around the point π/4, we see that this expression is δ sin(π/4)+O(δ2).
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Experimental data set Infocom 06
Device iMote
Network type Bluetooth
Duration (days) 3
Granularity (sec) 120
Participants with profile 61
Internal contacts number 191,336
Average Contacts/pair/day 6.7

Table 1 Detailed information on the Infocom 06 trace.

x

y

z

001

100

010

S

D

α
i

Ri

Fig. 1 Node S and D in the unit sphere, and random choice of the angles between nodes: first,
the angle αi is chosen uniformly at random in [0, π/2]; then, a point Ri is chosen uniformly
at random in the (m− 1)-dimensional space obtained by fixing angle αi w.r.t. node S. In this
example, we have m = 3.
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Fig. 2 Difference between average packet delivery delay with FM and IB routing with the
Infocom 06 trace as a function of the message TTL.
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(a) IM network of 1000 nodes.

0
10m
20m
30m
40m
50m

1 hour
70m
80m
90m

100m
110m
2hour

2h 4h 8h 12h 16h 20h 1d

A
V

G
 D

e
la

y
 F

M
 -

 A
V

G
 D

e
la

y
 I
B

TTL

γ = .2 
γ = .45
γ = .6 
γ = .7 
γ = .75
γ = .9 

(b) IM network of 2000 nodes.

Fig. 3 Difference between average packet delivery delay with FM and IB routing with SWIM
mobility in the Interest-based mobility (IM) scenario, as a function of the message TTL.
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(a) NIM network of 1000 nodes.
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(b) NIM network of 2000 nodes.

Fig. 4 Difference between average packet delivery delay with FM and IB routing with SWIM
mobility in the Non Interest-based mobility (NIM) scenario, as a function of the message TTL.
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