Abstract
This paper revisits the k-nearest-neighbor (k-NN) Voronoi diagram and presents the first output-sensitive paradigm for its construction. It introduces the k-NN Delaunay graph, which corresponds to the graph theoretic dual of the k-NN Voronoi diagram, and uses it as a base to directly compute the k-NN Voronoi diagram in R 2. In the L 1, L ∞ metrics this results in O((n + m)logn) time algorithm, using segment-dragging queries, where m is the structural complexity (size) of the k-NN Voronoi diagram of n point sites in the plane. The paper also gives a tighter bound on the structural complexity of the k-NN Voronoi diagram in the L ∞ (equiv. L 1) metric, which is shown to be O(min{k(n − k), (n − k)2}).
This work was performed while the first and third authors visited University of Lugano in September/October 2010. It was supported in part by the University of Lugano during the visit, by the Swiss National Science Foundation under grant SNF-200021-127137, and by the National Science Council, Taiwan under grants No. NSC-98-2221-E-001-007-MY3, No. NSC-98-2221-E-001-008-MY3, and No. NSC-99-2918-I-001-009.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abellanas, M., Bose, P., Garcia, J., Hurtado, F., Nicolas, C.M., Ramos, P.A.: On structural and graph theoretic properties of higher order Delaunay graphs. Internat. J. Comput. Geom. Appl. 19(6), 595–615 (2009)
Agarwal, P.K., de Berg, M., Matousek, J., Schwarzkopf, I.: Constructing levels in arrangements and higher order Voronoi diagrams. Siam J. on Computing 27(3), 654–667 (1998)
Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing Voronoi diagram of a convex polygon. Discrete and Computational Geometry 4, 591–604 (1984)
Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Handbook of Computational Geometry. Elseiver, Amsterdam (2000)
Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Internat. J. Comput. Geom. Appl. 2, 363–381 (1992)
Boissonnat, J.D., Devillers, O., Teillaud, M.: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis. Algorithmia 9, 329–356 (1993)
Chazelle, B.: An algorithm for segment dragging and its implementation. Algorithmica 3, 205–221 (1988)
Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi Diagram. IEEE Trans. on Computers 36(11), 1349–1454 (1987)
Clarkson, K.L.: New applications of random sampling in computational geometry. Discrete and Computational Geometry 2, 195–222 (1987)
Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete and Computational Geometry 4, 387–421 (1989)
Edelsbrunner, H., O’Rourke, J., Seidel, R.: Constructing arrangements of lines and hyperplanes with applications. SIAM J. on Computing 15, 341–363 (1986)
Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangulations. Computaional Geometry 23(1), 85–98 (2002)
Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. on Applied Mathematics 14, 255–265 (1966)
Lee, D.-T.: On k-nearest neighbor Voronoi Diagrams in the plane. IEEE Trans. on Computers 31(6), 478–487 (1982)
Mitchell, J.S.B.: L1 Shortest Paths Among Polygonal Obstacles in the Plane. Algorithmica 8, 55–88 (1992)
Mulmuley, K.: On levels in arrangements and Voronoi diagrams. Discrete and Computational Geometry 6, 307–338 (1991)
Papadopoulou, E.: Critical Area computation for missing material defects in VLSI circuits. IEEE Trans. on CAD 20(5), 583–597 (2001)
Papadopoulou, E.: Net-aware Critical area extraction for opens in VLSI circuits via higher-order Voronoi diagrams. IEEE Trans. on CAD 30(5), 704–716 (2011)
Papadopoulou, E., Lee, D.-T.: The L ∞ Voronoi Diagram of Segments and VLSI Applications. Internat. J. Comput. Geom. Appl. 11(5), 503–528 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, CH., Papadopoulou, E., Lee, D.T. (2011). An Output-Sensitive Approach for the L 1/L ∞ k-Nearest-Neighbor Voronoi Diagram. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-23719-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23718-8
Online ISBN: 978-3-642-23719-5
eBook Packages: Computer ScienceComputer Science (R0)