Skip to main content

On the Approximation Performance of Fictitious Play in Finite Games

  • Conference paper
Algorithms – ESA 2011 (ESA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6942))

Included in the following conference series:

  • 2698 Accesses

Abstract

We study the performance of Fictitious Play, when used as a heuristic for finding an approximate Nash equilibrium of a two-player game. We exhibit a class of two-player games having payoffs in the range [0,1] that show that Fictitious Play fails to find a solution having an additive approximation guarantee significantly better than 1/2. Our construction shows that for n×n games, in the worst case both players may perpetually have mixed strategies whose payoffs fall short of the best response by an additive quantity 1/2 − O(1/n 1 − δ) for arbitrarily small δ. We also show an essentially matching upper bound of 1/2 − O(1/n).

Supported by EPSRC grants EP/G069239/1 and EP/G069034/1 “Efficient Decentralised Approaches in Algorithmic Game Theory.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brandt, F., Fischer, F., Harrenstein, P.: On the Rate of Convergence of Fictitious Play. In: 3rd Symposium on Algorithmic Game Theory, pp. 102–113 (2010)

    Google Scholar 

  2. Berger, U.: Fictitious play in 2 × n games. Journal of Economic Theory 120, 139–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosse, H., Byrka, J., Markakis, E.: New Algorithms for Approximate Nash Equilibria in Bimatrix Games. In: Proceedings of the 3rd International Workshop on Internet and Network Economics, pp. 17–29 (2007)

    Google Scholar 

  4. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. Journal of the ACM 56(3), 1–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Conitzer, V.: Approximation Guarantees for Fictitious Play. In: Procs of 47th Annual Allerton Conference on Communication, Control, and Computing, pp. 636–643 (2009)

    Google Scholar 

  6. Daskalakis, C., Frongillo, R., Papadimitriou, C.H., Pierrakos, G., Valiant, G.: On Learning Algorithms for Nash Equilibria. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) AGT 2010. LNCS, vol. 6386, pp. 114–125. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A Note on Approximate Nash Equilibria. Theoretical Computer Science 410(17), 1581–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The Complexity of Computing a Nash Equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  10. Robinson, J.: An Iterative Method of Solving a Game. Annals of Mathematics 54(2), 296–301 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shapley, L.: Some topics in two-person games. In: Advances in Game Theory. Annals of Mathematics Studies, vol. 52, Princeton University Press, Princeton (1964)

    Google Scholar 

  12. Tsaknakis, H., Spirakis, P.G.: An Optimization Approach for Approximate Nash Equilibria. Internet Mathematics 5(4), 365–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, P.W., Savani, R., Sørensen, T.B., Ventre, C. (2011). On the Approximation Performance of Fictitious Play in Finite Games. In: Demetrescu, C., Halldórsson, M.M. (eds) Algorithms – ESA 2011. ESA 2011. Lecture Notes in Computer Science, vol 6942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23719-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23719-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23718-8

  • Online ISBN: 978-3-642-23719-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics