Abstract
The connection between the complexity of constraint languages and clone theory, discovered by Cohen and Jeavons in a series of papers, has been a fruitful line of research on the complexity of CSPs. In a recent result, Cohen et al. [14] have established a Galois connection between the complexity of valued constraint languages and so-called weighted clones. In this paper, we initiate the study of weighted clones. Firstly, we prove an analogue of Rosenberg’s classification of minimal clones for weighted clones. Secondly, we show minimality of several weighted clones whose support clone is generated by a single minimal operation. Finally, we classify all Boolean weighted clones. This classification implies a complexity classification of Boolean valued constraint languages obtained by Cohen et al. [13]
This research was supported by EPSRC grant EP/F01161X/1. Stanislav Živný is supported by a Junior Research Fellowship at University College, Oxford.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barto, L., Kozik, M., Maróti, M., Niven, T.: CSP dichotomy for special triads. Proceedings of the American Mathematical Society 137(9), 2921–2934 (2009)
Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no sources and no sinks. SIAM Journal on Computing 38(5), 1782–1802 (2009)
Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited. In: Proc. of LICS 2011 (2011)
Barto, L., Kozik, M.: Constraint Satisfaction Problems of Bounded Width. In: Proc. of FOCS 2009, pp. 461–471 (2009)
Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with few subalgebras of powers. Trans. of AMS 362(3), 1445–1473 (2010)
Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proc. of STOC 2001, pp. 667–674 (2001)
Bulatov, A.: A Graph of a Relational Structure and Constraint Satisfaction Problems. In: Proc. of LICS 2004, pp. 448–457 (2004)
Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. Journal of the ACM 53(1), 66–120 (2006)
Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the Complexity of Constraints using Finite Algebras. SIAM Journal on Computing 34(3), 720–742 (2005)
Bulatov, A.A.: Tractable Conservative Constraint Satisfaction Problems. In: Proc. of LICS 2003, pp. 321–330 (2003)
Cohen, D.A., Cooper, M.C., Jeavons, P.G.: An Algebraic Characterisation of Complexity for Valued Constraints. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 107–121. Springer, Heidelberg (2006)
Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn clauses: Tractable optimization problems defined by tournament pair multimorphisms. Theoretical Computer Science 401(1-3), 36–51 (2008)
Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The Complexity of Soft Constraint Satisfaction. Artificial Intelligence 170(11), 983–1016 (2006)
Cohen, D., Creed, P., Jeavons, P., Živný, S.: An algebraic theory of complexity for valued constraints: Establishing a Galois connection. In: Murlak, F., Sankowski, P. (eds.) Mathematical Foundations of Computer Science 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)
Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System Sciences 51(3), 511–522 (1995)
Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (2001)
Csákány, B.: Minimal clones – a minicourse. Algebra Universalis 54(1), 73–89 (2005)
Denecke, K., Wismath, S.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC Press (2002)
Feder, T., Vardi, M.: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on Computing 28(1), 57–104 (1998)
Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theoretical Computer Science 200(1-2), 185–204 (1998)
Jeavons, P., Cohen, D., Gyssens, M.: Closure Properties of Constraints. Journal of the ACM 44(4), 527–548 (1997)
Kolmogorov, V., Živný, S.: The complexity of conservative finite-valued CSPs. Technical repport arXiv:1008.1555 (August 2010)
Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs (submitted for publication, 2011)
Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization (1988)
Post, E.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies, vol. 5. Princeton University Press, Princeton (1941)
Rosenberg, I.: Minimal Clones I: the five types. In: Lectures in Universal Algebra (Proc. Conf. Szeged 1983). Colloq. Math. Soc. Janos Bolyai, vol. 43, pp. 405–427. North-Holland, Amsterdam (1986)
Schaefer, T.: The Complexity of Satisfiability Problems. In: Proc. of STOC 1978, pp. 216–226 (1978)
Schrijver, A.: Theory of linear and integer programming (1986)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency (2003)
Świerczkowski, S.: Algebras which are independently generated by every n elements. Fundamenta Mathematicae 49, 93–104 (1960)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Creed, P., Živný, S. (2011). On Minimal Weighted Clones. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)